Math 241: Practice Problems for Exam 1

1. Consider the points $\mathbf{P}=(1,1,2), \mathbf{Q}=(2,1,1), \mathbf{R}=(1,2,1)$
(a) Find the symmetric equations of the line through the points \mathbf{P} and \mathbf{Q}.
(b) For the point \mathbf{R} find the closest point \mathbf{S} on the line from (a).
(c) Find the area of the triangle with the corners $\mathbf{P}, \mathbf{Q}, \mathbf{R}$.
(d) Find the volume of the tetrahedron with the vertices $(0,0,0), \mathbf{P}, \mathbf{Q}, \mathbf{R}$.
(e) Find an equation $A x+B y+C y=D$ for the plane through the points $\mathbf{P}, \mathbf{Q}, \mathbf{R}$.
(f) Find an equation $A^{\prime} x+B^{\prime} y+C^{\prime} y=D^{\prime}$ of the plane through the points P, Q which is orthogonal on the plane from (e).
2. Consider the position function $\mathbf{r}(t)=\left(\frac{1}{3} t^{3}, 2 t, t^{2}\right)$.
(a) For the time $t=-1$ find the speed vector $\mathbf{v}_{0}=\mathbf{v}(-1)$ and the acceleration vector $\mathbf{a}_{0}=\mathbf{a}(-1)$.
(b) Find the decomposition $\mathbf{a}_{0}=\mathbf{a}_{\text {par }}+\mathbf{a}_{\text {orth }}$ where $\mathbf{a}_{\text {par }}$ is parallel to \mathbf{v}_{0} and $\mathbf{a}_{\text {orth }}$ is orthogonal on \mathbf{v}_{0}. Use this to find the change of speed $V^{\prime}(-1)$ and the curvature $\kappa(-1)$ (here $V(t)$ denotes the speed).
(c) Consider the curve given by $\mathbf{r}(t)$ for t between -1 and 1 and find the length of this curve.
3. Assume that the acceleration vector is $\mathbf{a}(t)=(1, t,-1)$. The initial position is $\mathbf{r}(0)=(1,0,0)$, the initial velocity is $\mathbf{v}(0)=(1,0,1)$. Find the position $\mathbf{r}(t)$.
