Practice Problems for Exam 4

- **1.** Let \mathscr{C} denote the helix given by $(2\cos t, 2\sin t, t)$ for $t \in [0, 2\pi]$
 - (a) Find $I = \int_{\mathscr{C}} (x+y+z) ds$.
 - **(b)** Find $W = \int_{\mathscr{C}} x dx + y dy + z dz$.
 - (c) Show that the vector field from (b) is conservative. Find the integral W using the fundamental theorem of line integrals.
- **2.** Let \mathscr{C} denote the closed curve given by the points (x, y) with $x^2 + y^2 = 4$, traversed counterclockwise.
 - (a) Find $W = \int_{\mathscr{C}} (x-y)dx + (x+y)dy$.
 - (b) Find the integral W from (a) using Green's theorem.
- **3.** Let Σ be the part of the sphere $x^2 + y^2 + z^2 = 4$ with $x \ge 0$, $y \ge 0$, $z \ge 0$. Write the surface integral $\iint (x+y+z)dS$ as an iterated integral over θ , ϕ and evaluate it.
- **4.** Let Σ denote the whole sphere $x^2 + y^2 + z^2 = 4$ and consider the vector field $\vec{F} = (x, y, z)$.
 - (a) Write the flux integral $I = \iint_{\Sigma} \vec{F} \cdot \vec{n} dS$ as an iterated integral over ϕ, θ and evaluate it.
 - (b) Evaluate the integral I from (a) using the divergence theorem.