Practice Problems for Exam 4

1. Let \mathscr{C} denote the helix given by $(2 \cos t, 2 \sin t, t)$ for $t \in[0,2 \pi]$
(a) Find $I=\int_{\mathscr{C}}(x+y+z) d s$.
(b) Find $W=\int_{\mathscr{C}} x d x+y d y+z d z$.
(c) Show that the vector field from (b) is conservative. Find the integral W using the fundamental theorem of line integrals.
2. Let \mathscr{C} denote the closed curve given by the points (x, y) with $x^{2}+y^{2}=4$, traversed counterclockwise.
(a) Find $W=\int_{\mathscr{C}}(x-y) d x+(x+y) d y$.
(b) Find the integral W from (a) using Green's theorem.
3. Let Σ be the part of the sphere $x^{2}+y^{2}+z^{2}=4$ with $x \geq 0, y \geq 0, z \geq 0$. Write the surface integral $\iint(x+y+z) d S$ as an iterated integral over θ, ϕ and evaluate it.
4. Let Σ denote the whole sphere $x^{2}+y^{2}+z^{2}=4$ and consider the vector field $\vec{F}=(x, y, z)$.
(a) Write the flux integral $I=\iint_{\Sigma} \vec{F} \cdot \vec{n} d S$ as an iterated integral over ϕ, θ and evaluate it.
(b) Evaluate the integral I from (a) using the divergence theorem.
