Topics for Exam 4

Parametrizations you should know:

straight line from \vec{A} to \vec{B} : $\vec{r}(t) = \vec{A} + (\vec{B} - \vec{A})t$ with $0 \le t \le 1$ circle $x^2 + y^2 = R^2$, z = 0: $\vec{r}(t) = (R\cos t, R\sin t, 0)$ with $0 \le t \le 2\pi$ sphere $x^2 + y^2 + z^2 = R^2$: $\vec{r}(\phi, \theta) = (R\sin \phi\cos \theta, R\sin \phi\sin \theta, R\cos \phi)$ with $0 \le \theta \le 2\pi, 0 \le \phi \le \pi$ cylinder $x^2 + y^2 = R^2$, $a \le z \le b$: $\vec{r}(\theta, z) = (R\cos \theta, R\sin \theta, z)$ with $0 \le \theta \le 2\pi, a \le z \le b$ graph of function: points z = f(x, y) for $a \le x \le b, c \le y \le d$: $\vec{r}(x, y) = (x, y, f(x, y))$ with $a \le x \le b, c \le y \le d$

Line integrals

scalar function f: $ds = ||\vec{r}'|| dt$

"work integral" for vector field \vec{F} : $d\vec{r} = \vec{r}'dt$

Surface integrals

scalar function f: $dS = ||\vec{r}_u \times \vec{r}_v|| du dv$

"flux integral" for vector field \vec{F} : $\vec{n} dS = (\vec{r}_u \times \vec{r}_v) du dv$

Finding potential f for vector field \vec{F} : If $\operatorname{curl} \vec{F} = \vec{0}$ there exists a potential f(x,y,z) (in domain without "holes")

- 1. $f_x = F_1$: taking antiderivative w.r.t. x gives $f(x, y, z) = (\cdots) + g(y, z)$
- 2. $f_y = F_2$ gives $g_y(y,z) = \cdots$, taking antiderivative w.r.t. y gives $g(y,z) = (\cdots) + h(z)$
- 3. $f_z = F_3$ gives $h'(z) = \cdots$, taking antiderivative w.r.t. z gives $h(z) = (\cdots)$ (we can use constant C = 0)

Fundamental theorem of line integrals:
$$\int_{\mathscr{C}} \operatorname{grad} f \cdot d\vec{r} = f(\vec{B}) - f(\vec{A})$$

The curve \mathscr{C} starts at point \vec{A} and ends at point \vec{B} .

Green's theorem:
$$\boxed{ \iint_R \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) dA = \int_{\mathscr{C}} \left(F_1 dx + F_2 dy \right) }$$

The curve \mathscr{C} is the boundary of the 2D region R, oriented counter clockwise.

Divergence theorem:
$$\iiint_D \operatorname{div} \vec{F} \, dV = \iint_{\Sigma} \vec{F} \cdot \vec{n} \, dS$$

The surface Σ is the boundary of the 3D region D, with the normal vector \vec{n} pointing outside.