Topics for Exam 4

Parametrizations you should know:

straight line from \vec{A} to $\vec{B}: \quad \vec{r}(t)=\vec{A}+(\vec{B}-\vec{A}) t$ with $0 \leq t \leq 1$
circle $x^{2}+y^{2}=R^{2}, z=0: \quad \vec{r}(t)=(R \cos t, R \sin t, 0)$ with $0 \leq t \leq 2 \pi$
sphere $x^{2}+y^{2}+z^{2}=R^{2}: \quad \vec{r}(\phi, \theta)=(R \sin \phi \cos \theta, R \sin \phi \sin \theta, R \cos \phi)$ with $0 \leq \theta \leq 2 \pi, 0 \leq \phi \leq \pi$
cylinder $x^{2}+y^{2}=R^{2}, a \leq z \leq b: \quad \vec{r}(\theta, z)=(R \cos \theta, R \sin \theta, z)$ with $0 \leq \theta \leq 2 \pi, a \leq z \leq b$
graph of function: points $z=f(x, y)$ for $a \leq x \leq b, c \leq y \leq d: \quad \vec{r}(x, y)=(x, y, f(x, y))$ with $a \leq x \leq b, c \leq y \leq d$

Line integrals

scalar function $f: d s=\left\|\vec{r}^{\prime}\right\| d t$
"work integral" for vector field $\vec{F}: d \vec{r}=\vec{r}^{\prime} d t$

Surface integrals

scalar function $f: d S=\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| d u d v$
"flux integral" for vector field $\vec{F}: \vec{n} d S=\left(\vec{r}_{u} \times \vec{r}_{v}\right) d u d v$
Finding potential f for vector field \vec{F} : If $\operatorname{curl} \vec{F}=\overrightarrow{0}$ there exists a potential $f(x, y, z)$ (in domain without "holes")

1. $f_{x}=F_{1}$: taking antiderivative w.r.t. x gives $f(x, y, z)=(\cdots)+g(y, z)$
2. $f_{y}=F_{2}$ gives $g_{y}(y, z)=\cdots$, taking antiderivative w.r.t. y gives $g(y, z)=(\cdots)+h(z)$
3. $f_{z}=F_{3}$ gives $h^{\prime}(z)=\cdots$, taking antiderivative w.r.t. z gives $h(z)=(\cdots)$ (we can use constant $C=0$)

Fundamental theorem of line integrals: $\int_{\mathscr{C}} \operatorname{grad} f \cdot d \vec{r}=f(\vec{B})-f(\vec{A})$
The curve \mathscr{C} starts at point \vec{A} and ends at point \vec{B}.
Green's theorem: $\iint_{R}\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) d A=\int_{\mathscr{C}}\left(F_{1} d x+F_{2} d y\right)$
The curve \mathscr{C} is the boundary of the 2D region R, oriented counter clockwise.
Divergence theorem: $\iiint_{D} \operatorname{div} \vec{F} d V=\iint_{\Sigma} \vec{F} \cdot \vec{n} d S$
The surface Σ is the boundary of the 3D region D, with the normal vector \vec{n} pointing outside.

