Exam 2

Contents

1: Let f(x,y)=sqrt(x^2-3y) and (x0,y0)=(2,1)

First find z0 = f(x0,y0) and g=grad f(x0,y0).

syms x y
x0 = 2; y0 = 1;
f = sqrt(x^2-3*y);
fx = diff(f,x)
fy = diff(f,y)
z0 = subs(f,{x,y},{x0,y0})
g = subs([fx,fy],{x,y},{x0,y0})
fx =
x/(x^2 - 3*y)^(1/2)
fy =
-3/(2*(x^2 - 3*y)^(1/2))
z0 =
1
g =
[ 2, -3/2]

1(a):

Find a unit vector a such that the directional derivative is maximal, give the value of the directional derivative.

amax = g/norm(g)             % unit vector in direction of g
dir_deriv = norm(g)
amax =
[ 4/5, -3/5]
dir_deriv =
5/2

1(b)

Find a unit vector a such that the directional derivative is zero.

a0 = [-g(2),g(1)]/norm(g)    % unit vector orthogonal on g

ezcontourc(f,[0 3 0 2],51); hold on
plotpts([x0,y0],'ko');
arrow([x0,y0],amax,'k');
arrow([x0,y0],a0,'k');
hold off; axis equal; colorbar
a0 =
[ 3/5, 4/5]

1(c)

Use the tangent plane approximation to approximate f(1.9,1.2).

p = z0 + dot(g,[1.99,1.02]-[x0,y0])  % evaluate p(x0,y0)
double(p)
double(subs(f,{x,y},{1.99,1.02}))    % f(x0,y0) for comparison
p =
19/20
ans =
    0.9500
ans =
    0.9487

2(a)

Find all critical points of the function f(x,y) = x^2*y + y^2 - 4*y

Answer: Three critical points (2,0) (saddle pt), (0,2) (rel.min.), (-2,0) (saddle pt)

syms x y
f = x^2*y + y^2 - 4*y

fx = diff(f,x)
fy = diff(f,y)
fxx = diff(fx,x)
fxy=diff(fx,y)
fyy=diff(fy,y)
D = fxx*fyy-fxy^2;
[xs,ys] = solve(fx,fy,x,y); [xs,ys]  % find critical points
subs([D,fxx],{x,y},{xs,ys})          % evaluate D and fxx in all critical points

ezcontourc(f,[-2.5 2.5 -0.5 4],-3:25); colorbar; hold on
plotpts([xs,ys],'k*'); hold off; axis equal
f =
x^2*y + y^2 - 4*y
fx =
2*x*y
fy =
x^2 + 2*y - 4
fxx =
2*y
fxy =
2*x
fyy =
2
ans =
[  2, 0]
[  0, 2]
[ -2, 0]
ans =
[ -16, 0]
[   8, 4]
[ -16, 0]

2(b)

xi = 0; yi = 2;          % interior critical point from 2(a)

g1 = x^2;                % y for lower boundary
F1 = subs(f,y,x^2)       % f on lower boundary
F1p = diff(F1,x)
xs1 = solve(F1p,x)       % critical points on lower boundary
ys1 = subs(g1,x,xs1)     % corresponding y values

g2 = sym(4);             % y for upper boundary
F2 = subs(f,y,4)         % f on upper boundary
F2p = diff(F2,x)
xs2 = solve(F2p,x)       % critical points on upper boundary
ys2 = subs(g2,x,xs2)     % corresponding y values

xc = [-2;2]; yc = [4;4]; % two corner points

X = [xi;xs1;xs2;xc];     % list of all points where extrema may occur
Y = [yi;ys1;ys2;yc];
Z = subs(f,{x,y},{X,Y}); % show x,y,f(x,y) for all points in list
[X,Y,Z]
Zd = double(Z);          % need to convert to double for min, max
fmax = max(Zd)
fmin = min(Zd)

ezcontourc(f,[-2.5 2.5 -0.5 4],-3:25); colorbar; hold on
ezplot(g1,[-2,2]);       % draw lower boundary
ezplot(g2,[-2,2]);       % draw upper boundary
plotpts([X,Y],'k*');     % draw all points in list
for i=1:length(X)        %    and label them with 'f=...'
  texts([X(i),Y(i)],sprintf('f=%g',Zd(i)))
end
hold off; axis equal
F1 =
2*x^4 - 4*x^2
F1p =
8*x^3 - 8*x
xs1 =
  0
  1
 -1
ys1 =
 0
 1
 1
F2 =
4*x^2
F2p =
8*x
xs2 =
0
ys2 =
4
ans =
[  0, 2, -4]
[  0, 0,  0]
[  1, 1, -2]
[ -1, 1, -2]
[  0, 4,  0]
[ -2, 4, 16]
[  2, 4, 16]
fmax =
    16
fmin =
    -4

3: Maximize volume of cylinder if surface area = 6*pi.

Answer: Volume is maximal for radius x=1 and height y=2.

syms x y lambda
A = 2*x^2 + 2*x*y        % surface area is pi*A
V = x^2*y                % volume is pi*V

Ax = diff(A,x)
Ay = diff(A,y)
Vx = diff(V,x)
Vy = diff(V,y)

[Vx-lambda*Ax;Vy-lambda*Ay;A-6]
s = solve(Vx-lambda*Ax,Vy-lambda*Ay,A-6,x,y,lambda);
[s.x,s.y]                % two critical points
ezcontourc(V,[0 2 0 8],0:.5:10); colorbar; hold on
p = ezplot(A-6,[0 2 0 8]);   % draw curve where A=6
set(p,'Color','black')
plotpts([s.x,s.y],'k*'); texts([s.x(1),s.y(1)],'maximal volume')
hold off
title('curve where A=6 (black) and contour lines for V')
A =
2*x^2 + 2*y*x
V =
x^2*y
Ax =
4*x + 2*y
Ay =
2*x
Vx =
2*x*y
Vy =
x^2
ans =
 2*x*y - lambda*(4*x + 2*y)
           x^2 - 2*lambda*x
          2*x^2 + 2*y*x - 6
ans =
[  1,  2]
[ -1, -2]