Examples: Evaluate triple integrals in Cartesian, cylindrical, spherical coordinates

Contents

You need to download new m-files.

Download the files regionvs.m, ezsurfvs.m, regionpol.m, ezsurfpol.m, defaultlighting.m

(1a): Triple integral in Cartesian coordinates x,y,z

The region D consists of the points (x,y,z) with x^2+y^2+z^2<=4 and x^2+y^2<=1 and z>=0. Find the volume of this region.

Answer: Note that x^2+y^2+z^2<=4 gives points inside of a sphere with radius 2, and x^2+y^2<=1 gives points inside a cylinder of radius 1. We have -1<=x<=1, -sqrt(1-x^2)<=y<=sqrt(1-x^2), 0<=z<=sqrt(4-x^2-y^2).

syms x y z real
f = 1;
a = -1; b = 1;                        % limits for x
g1 = -sqrt(1-x^2); g2 = sqrt(1-x^2);  % limits for y
h1 = 0; h2 = sqrt(4-x^2-y^2);         % limits for z
I1 = int(f,z,h1,h2)          % z integral: this is easy
I2 = int(I1,y,g1,g2)         % y-integral: Matlab can do this
I = int(I2,x,a,b)            % z-integral: Matlab cannot do this, returns int(...)
Id = double(I)               % we can still find numerical value using double(...) or vpa(...)

ezsurfvs(h2,a,b,g1,g2); hold on   % draw upper surface
regionvs(a,b,g1,g2);  hold off    % draw region R in xy-plane
nice3d; view(-40,20); defaultlighting;
I1 =
(- x^2 - y^2 + 4)^(1/2)
I2 =
3^(1/2)*(1 - x^2)^(1/2) - 2*asin((1 - x^2)^(1/2)/(4 - x^2)^(1/2))*(x^2/2 - 2)
I =
int(3^(1/2)*(1 - x^2)^(1/2) - 2*asin((1 - x^2)^(1/2)/(4 - x^2)^(1/2))*(x^2/2 - 2), x == -1..1)
Id =
    5.8724

(1b): Triple integral in cylindrical coordinates r,theta,z

Compute the integral from 1(a) using cylindrical coordinates

Answer: We have 0<=theta<=2*pi, 0<=r<=1, 0<=z<=sqrt(4-r^2)

% Compute the integral from 1(a) using cylindrical coordinates
% *Answer:* We have 0<=theta<=2*pi, 0<=r<=1, 0<=z<=sqrt(4-r^2)

syms r theta z real
f = 1;                            % integral f*r*dr*dtheta*dz
Pi = sym('pi');
a = 0; b = 2*Pi;                  % limits for theta
G1 = 0; G2 = 1;                   % limits for r
H1 = 0; H2 = sqrt(4-r^2);         % limits for z
I1 = int(f*r,z,H1,H2)             % z integral: this is easy
I2 = int(I1,r,G1,G2)              % r-integral
I = int(I2,theta,a,b)             % theta-integral
Id = double(I)                    % we get same result as in (1a) !

ezsurfpol(H2,a,b,G1,G2); hold on  % draw upper surface
regionpol(a,b,G1,G2); hold off    % draw region R in xy-plane
nice3d; view(-40,20); defaultlighting;
I1 =
r*(4 - r^2)^(1/2)
I2 =
8/3 - 3^(1/2)
I =
-2*pi*(3^(1/2) - 8/3)
Id =
    5.8724

(2a): Triple integral in cylindrical coordinates r,theta,z

Now the region D consists of the points (x,y,z) with x^2+y^2+z^2<=4 and z>=sqrt(3)*r. Find the volume of this region.

Answer: Note that x^2+y^2+z^2<=4 gives points inside of a sphere with radius 2, and z>=sqrt(3)*r gives points in a cone.

We have 0<=theta<=2*pi, 0<=r<=1, sqrt(3)*r<=z<=sqrt(4-r^2)

syms r theta z real
f = 1;                            % integral f*r*dr*dtheta*dz
Pi = sym('pi');
a = 0; b = 2*Pi;                  % limits for theta
G1 = 0; G2 = 1;                   % limits for r
H1 = sqrt(3)*r; H2 = sqrt(4-r^2); % limits for z
I1 = int(f*r,z,H1,H2)             % z integral
I2 = int(I1,r,G1,G2)              % r-integral
I = int(I2,theta,a,b)             % theta-integral
Id = double(I)

ezsurfpol(H1,a,b,G1,G2); hold on  % draw lower surface
ezsurfpol(H2,a,b,G1,G2);          % draw upper surface
regionpol(a,b,G1,G2); hold off    % draw region R in xy-plane
nice3d; view(-40,20); defaultlighting;
I1 =
-r*(3^(1/2)*r - (4 - r^2)^(1/2))
I2 =
8/3 - (4*3^(1/2))/3
I =
-(8*pi*(3^(1/2) - 2))/3
Id =
    2.2448

(2b): Triple integral in spherical coordinates rho,phi,theta

For the region D from the previous problem find the volume using spherical coordinates.

Answer: On the boundary of the cone we have z=sqrt(3)*r. Since r/z=tan(phi) we have phi=arctan(1/sqrt(3))=pi/6 on the boundary of the cone.

Hence we have 0<=theta<=2*pi, 0<=phi<=pi/6, 0<=rho<=2

syms rho phi theta real
Pi = sym('pi');

f = 1;                               % integral f*rho^2*sin(phi)*drho*dphi*dtheta
a = 0; b = 2*Pi;                     % limits for theta
h1 = 0; h2 = Pi/6;                   % limits for phi
F1 = 0; F2 = 2;                      % limits for rho
I1 = int(f*rho^2*sin(phi),rho,F1,F2) % z integral
I2 = int(I1,phi,h1,h2)               % phi-integral
I = int(I2,theta,a,b)                % theta-integral
Id = double(I)                       % we get same result as in (2a) !
I1 =
(8*sin(phi))/3
I2 =
8/3 - (4*3^(1/2))/3
I =
-(8*pi*(3^(1/2) - 2))/3
Id =
    2.2448