Examples: Triple integrals in spherical coordinates, center of mass

Contents

(1): Region D bounded by a sphere and two planes

The region D consists of the points (x,y,z) with x^2+y^2+z^2<=4 and y>=0, z>=1

Describe this region in spherical coordinates alpha<=theta<=beta, h1<=phi<=h2, H1<=rho<=H2 and plot it.

Answer: The region y>=0 corresponds to 0<=theta<=pi. Let r=sqrt(x^2+y^2). At the intersection of the plane and the sphere we have r^2+1^2=4, so r=sqrt(3). Since r/z=tan(phi) we have phi=arctan(sqrt(3))=pi/3 on this intersection. As z=rho*cos(phi) we have on the plane z=1 that rho=1/cos(phi).

Hence we have 0<=theta<=2*pi, 0<=phi<=pi/3, 1/cos(phi)<=rho<=2.

syms rho phi theta z real
Pi = sym('pi');
a=0; b=Pi;                                % limits for theta
h1=0; h2=Pi/3;                            % limits for phi
F1=1/cos(phi); F2=2;                      % limits for rho
ezsurfspher(F2,a,b,h1,h2); hold on        % draw upper surface
surfcontour                               % show contours instead of grid
ezsurfspher(F1,a,b,h1,h2);                % draw lower surface
surfcontour
hold off; nice3d;
axis([-2 2 0 2 0 2]); view(-40,10);

(2): Find the volume V and center of mass of the region D using spherical coordinates

X = rho*sin(phi)*cos(theta); % express x,y,z in spherical coordinates
Y = rho*sin(phi)*sin(theta);
Z = rho*cos(phi);
J = rho^2*sin(phi)           % volume element is rho^2*sin(phi)*drho*dphi*dtheta

% Find volume: integrate over 1*dV = 1*J*drho*dphi*dtheta:
V = int(int(int(1*J,rho,F1,F2),phi,h1,h2),theta,a,b)
% Find integral of x*dV:
Ix = int(int(int(X*J,rho,F1,F2),phi,h1,h2),theta,a,b)
% Find integral of y*dV:
Iy = int(int(int(Y*J,rho,F1,F2),phi,h1,h2),theta,a,b)
% Find integral of z*dV:
Iz = int(int(int(Z*J,rho,F1,F2),phi,h1,h2),theta,a,b)

C = [Ix,Iy,Iz]/V;            % center of mass
center = double(C)           % numerical values
C0 = [C(1),C(2),0];

ezsurfspher(F2,a,b,h1,h2); hold on        % draw upper surface
surfcontour
ezsurfspher(F1,a,b,h1,h2);                % draw lower surface
surfcontour
plotpts([C;C0],'r*-'); texts(C,'C')
hold off; nice3d;
axis([-2 2 0 2 0 2]); view(-40,10)
J =
rho^2*sin(phi)
V =
(5*pi)/6
Ix =
0
Iy =
(4*pi)/3 - (3*3^(1/2))/2
Iz =
(9*pi)/8
center =
         0    0.6076    1.3500