Examples: Change of variables

Contents

(1) Double integral: polar coordinates

For polar coordinates (r,theta) find the area element using the determinant.

Answer: dx*dy = J*dr*dtheta with J = r

syms r theta real

X = r*cos(theta)  % We use capital letters for the functions X(rho,phi,theta) etc.
Y = r*sin(theta)

M = jacobian([X,Y],[r,theta]) % 2 by 2 matrix of all partial derivatives
                                      % 1st row are derivatives of X, 2nd row derivatives of Y
J = simplify(det(M))                  % find determinant and simplify
X =
r*cos(theta)
Y =
r*sin(theta)
M =
[ cos(theta), -r*sin(theta)]
[ sin(theta),  r*cos(theta)]
J =
r

(2a) Double integral: Plot region R given in terms of u,v

Let X(u,v)=u/v and Y(u,v)=v. The region R consists of the points (X,Y) where 1<=u<=3 and sqrt(u)<=v<=sqrt(2*u).

Plot the region R in the xy-plane.

syms u v real
X = u/v; Y = v; Z = 0;
ezsurfpar(X,Y,Z,1,3,sqrt(u),sqrt(2*u)) % plot points (X,Y,0) for 1<=u<=3, sqrt(u)<=v<=sqrt(2*u)
view(0,90)                             % and look vertically down at xy-plane

(2b) Double integral: Find integral over region R using u,v variables

Let f(x,y) = x^3*y and find the integral I of the function f over the region R, using the variables u,v.

syms x y real
f = x^3*y
F = subs(f,{x,y},{X,Y})                % substitute X,Y from above for x,y to get F(u,v)
M = jacobian([X,Y],[u,v])              % Find 2 by 2 matrix of partial derivatives
                                       % M = [ X_u X_v ; Y_u Yv ]
J = det(M)                             % determinant
I1 = int(F*J,v,sqrt(u),sqrt(2*u))      % inner integral over v
I = int(I1,u,1,3)                      % outer integral over u
f =
x^3*y
F =
u^3/v^2
M =
[ 1/v, -u/v^2]
[   0,      1]
J =
1/v
I1 =
u^2/4
I =
13/6

(3) Triple integral: volume element for spherical coordinates

For spherical coordinates (rho,phi,theta) find the volume element using the determinant.

Answer: dx*dy*dz = J*drho*dphi*dtheta with J = rho^2*sin(phi)

syms rho phi theta real

X = rho*sin(phi)*cos(theta)  % We use capital letters for the functions X(rho,phi,theta) etc.
Y = rho*sin(phi)*sin(theta)
Z = rho*cos(phi)

M = jacobian([X,Y,Z],[rho,phi,theta]) % 3 by 3 matrix of all partial derivatives
                                      % 1st row are derivatives of X, 2nd row derivatives of Y etc.
J = simplify(det(M))                  % find determinant and simplify
X =
rho*cos(theta)*sin(phi)
Y =
rho*sin(phi)*sin(theta)
Z =
rho*cos(phi)
M =
[ cos(theta)*sin(phi), rho*cos(phi)*cos(theta), -rho*sin(phi)*sin(theta)]
[ sin(phi)*sin(theta), rho*cos(phi)*sin(theta),  rho*cos(theta)*sin(phi)]
[            cos(phi),           -rho*sin(phi),                        0]
J =
rho^2*sin(phi)