Examples: Parametrized surfaces

Contents

(1a) Sphere with radius 2

Consider the points (x,y,z) with x^2+y^2+z^2. Find a parametrization using spherical coordinates phi,theta and plot the surface.

For the point (x0,y0,z0) with phi=pi/4 and theta=pi/4 find the normal vector and plot the tangent plane.

syms phi theta real
Pi = sym('pi');

X = 2*sin(phi)*cos(theta)  % Use spherical coordinates with rho=2
Y = 2*sin(phi)*sin(theta)
Z = 2*cos(phi)

R = [X,Y,Z];
Rphi = diff(R,phi)         % partial derivative with respect to phi
Rtheta = diff(R,theta)     % partial derivative with respect to theta

% Now plug in phi=pi/4, theta=pi/4:
R0 = subs(R,{phi,theta},{Pi/4,Pi/4})            % point on surface
Rphi0 = subs(Rphi,{phi,theta},{Pi/4,Pi/4})      % first tangent vector
Rtheta0 = subs(Rtheta,{phi,theta},{Pi/4,Pi/4})  % second tangent vector
N = cross(Rphi0,Rtheta0)                        % normal vector is cross product of tangent vectors

ezsurfpar(X,Y,Z,0,2*Pi,0,Pi,theta,phi); hold on % plot surface for theta in [0,2*pi], phi in [0,Pi]
plane(R0,N)                                     % plot tangent plane
hold off; nice3d; view(70,20)
X =
2*cos(theta)*sin(phi)
Y =
2*sin(phi)*sin(theta)
Z =
2*cos(phi)
Rphi =
[ 2*cos(phi)*cos(theta), 2*cos(phi)*sin(theta), -2*sin(phi)]
Rtheta =
[ -2*sin(phi)*sin(theta), 2*cos(theta)*sin(phi), 0]
R0 =
[ 1, 1, 2^(1/2)]
Rphi0 =
[ 1, 1, -2^(1/2)]
Rtheta0 =
[ -1, 1, 0]
N =
[ 2^(1/2), 2^(1/2), 2]

(1b) Part of sphere

Now consider the part of the sphere from (1a) with y>=0 and 0<=z<=1. Find the limits for theta and phi. Plot this surface.

Answer: y>=0 gives 0<=theta<=pi. z>=0 gives phi<=pi/2. For z=1 we have 1=z=2*cos(phi), hence cos(phi)=1/2 and phi=pi/3. Therefore the limits are 0<=theta<=pi, pi/3<=phi<=pi/2.

ezsurfpar(X,Y,Z,0,Pi,Pi/3,Pi/2,theta,phi)       % plot surface for theta in [0,pi], phi in [Pi/3,Pi/2]
nice3d

(2a) Cylinder

Consider the points (x,y,z) with y^2+z^2=1 and 0<=x<=3. Find a parameterization and plot the surface.

For the point (x0,y0,z0)=(1,-1/sqrt(2),1/sqrt(2)) find the normal vector and plot the tangent plane.

Answer: We use the parametrization (x,cos(theta),sin(theta)) with 0<=theta<=2*pi, 0<=x<=3.

syms theta x real
Pi = sym('pi');
X = x; Y = cos(theta); Z = sin(theta) % parametrization of surface
R = [X,Y,Z];
Rtheta = diff(R,theta)                % partial derivative w.r.t. theta
Rx = diff(R,x)                        % partial derivative w.r.t. x

x0 = 1; theta0 = 3/4*Pi;              % parameters for (x0,y0,z0), plug this in for R, Rtheta, Rx:
R0 = subs(R,{theta,x},{theta0,x0})           % point on surface
Rtheta0 = subs(Rtheta,{theta,x},{theta0,x0}) % first tangent vector
Rx0 = subs(Rx,{theta,x},{theta0,x0})         % second tangent vector
N = cross(Rtheta0,Rx)                        % normal vector

ezsurfpar(X,Y,Z,0,2*pi,0,3,theta,x); hold on % plot surface for theta in [0,2*pi], x in [0,3]
plane(R0,N)                                  % plot tangent plane
hold off; nice3d; view(20,30)
Z =
sin(theta)
Rtheta =
[ 0, -sin(theta), cos(theta)]
Rx =
[ 1, 0, 0]
R0 =
[ 1, -2^(1/2)/2, 2^(1/2)/2]
Rtheta0 =
[ 0, -2^(1/2)/2, -2^(1/2)/2]
Rx0 =
[ 1, 0, 0]
N =
[ 0, -2^(1/2)/2, 2^(1/2)/2]

(2b) Part of cylinder

Now consider the part of the cylinder from (2a) with x>=0 and x+z<=2. Find the limits for the parameters and plot the surface.

Answer: Since x<=2-z and z=sin(theta) we get 0<=theta<=2*pi, 0<=x<=2-sin(theta).

ezsurfpar(X,Y,Z,0,2*pi,0,2-sin(theta),theta,x) % plot surface for theta in [0,2*pi], x in [0,2-sin(theta)]
nice3d; view(20,30)