Examples: Area of parametrized surfaces

Contents

(1a) Part of cylinder

Consider the part of the cylinder y^2+z^2=1 with x>=0 and x+z<=2. Find the limits for the parameters and plot the surface.

Answer: We have y=cos(theta), z=sin(theta). Since x<=2-z and z=sin(theta) we get 0<=theta<=2*pi, 0<=x<=2-sin(theta).

syms theta x real
Pi = sym('pi');
X = x; Y = cos(theta); Z = sin(theta) % parametrization of surface

ezsurfpar(X,Y,Z,0,2*pi,0,2-sin(theta),theta,x) % plot surface for theta in [0,2*pi], x in [0,2-sin(theta)]
nice3d; view(20,30); defaultlighting
Z =
sin(theta)

(1b) Find the surface area!

R = [X,Y,Z];
Rtheta = diff(R,theta)                % partial derivative w.r.t. theta
Rx = diff(R,x)                        % partial derivative w.r.t. x
N = cross(Rx,Rtheta)
g = simplify(norm(N))                 % surface area is given by integral of g*dx*dtheta
area = int( int(g,x,0,2-sin(theta)) , theta,0,2*Pi)
Rtheta =
[ 0, -sin(theta), cos(theta)]
Rx =
[ 1, 0, 0]
N =
[ 0, -cos(theta), -sin(theta)]
g =
1
area =
4*pi

(2a) Part of cone

Consider the part of the cone sqrt(y^2+z^2)=x/2 with x>=0 and x+z<=2. Find the limits for the parameters and plot the surface.

Answer: We have y=x/2*cos(theta), z=x/2*sin(theta). Since x+z<=2 and z=x/2*sin(theta) we have x*(1+sin(theta)/2)<=2. Hence we get 0<=theta<=2*pi, 0<=x<=2/(1+sin(theta)/2).

syms theta x real
Pi = sym('pi');
X = x; Y = x/2*cos(theta); Z = x/2*sin(theta) % parametrization of surface
                                              % plot surface for theta in [0,2*pi], x in [0,2/(1+sin(theta)/2)]:
ezsurfpar(X,Y,Z,0,2*pi,0,2/(1+sin(theta)/2),theta,x)
nice3d; view(20,30); defaultlighting
Z =
(x*sin(theta))/2

(2b) Find the surface area!

Note that the outer integral is hard to do by hand.

R = [X,Y,Z];
Rtheta = diff(R,theta)                % partial derivative w.r.t. theta
Rx = diff(R,x)                        % partial derivative w.r.t. x
N = cross(Rx,Rtheta)
g = simplify(norm(N))                 % surface area is given by integral of g*dx*dtheta
area = int( int(g,x,0,2/(1+sin(theta)/2)) , theta,0,2*Pi)
Rtheta =
[ 0, -(x*sin(theta))/2, (x*cos(theta))/2]
Rx =
[ 1, cos(theta)/2, sin(theta)/2]
N =
[ (x*cos(theta)^2)/4 + (x*sin(theta)^2)/4, -(x*cos(theta))/2, -(x*sin(theta))/2]
g =
(5^(1/2)*abs(x))/4
area =
(8*pi*15^(1/2))/9