Linear ODE with constant coefficients: finding a fundamental set of solutions

ODE of order 2

We first consider the case of order 2. We have the homogeneous ODE

$$\underbrace{y'' + a_1 y' + a_0 y}_{Ly} = 0$$

with constants $a_0, a_1 \in \mathbb{R}$. We need to find solutions $Y_1(t), Y_2(t)$ which are **linearly independent** (i.e., we cannot write one function as a constant times the other function).

RECIPE: try to find solutions of the form $y(t) = e^{rt}$.

Then $y'(t) = re^{rt}$, $y''(t) = r^2e^{rt}$, and plugging this into the ODE gives

$$Le^{rt} = (r^2 + a_1 r + a_0)e^{rt}$$
 (1)

This is called "**KEY IDENTITY**". We want $Le^{rt} = 0$, so we must have

$$p(r) = r^2 + a_1 r + a_0 = 0$$

This is called the **characteristic equation**, and p(r) is called the **characteristic polynomial**.

Here we get a quadratic equation. We know that $p(r) = (r - r_1)(r - r_2)$ with

$$r_1 = \frac{1}{2} \left(-a_1 + \sqrt{a_1^2 - 4a_0} \right)$$
$$r_2 = \frac{1}{2} \left(-a_1 - \sqrt{a_1^2 - 4a_0} \right)$$

For real coefficients $a_0, a_1 \in \mathbb{R}$ we have the following three cases:

Case 1: $a_1^2 - 4a_0 > 0$ We get two different real values $r_1 \neq r_2$, hence we get two solutions

$$Y_1(t) = e^{r_1 t}, Y_2(t) = e^{r_2 t}$$

Case 2: $a_1^2 - 4a_0 = 0$ We get two equal solutions $r_1 = r_2$, i.e., we have $p(r) = (r - r_1)^2$. Here $Y_1(t) = e^{r_1 t}$ is one solution. But we must find a second, linearly independent solution $Y_2(t)$. The key identity holds for all $r, t \in \mathbb{R}$

$$(D^2 + a_1D + a_0)e^{rt} = p(r)e^{rt}$$

Here we consider e^{rt} as a function of r,t, and $D=\partial_t$. We now **take the partial derivative with respect to** r **on both sides**: On the left-hand side we get $\partial_r(D^2+a_1D+a_0)e^{rt}=(D^2+a_1D+a_0)\partial_r e^{rt}$ since $\partial_r\partial_t g(t,r)=\partial_t\partial_r g(t,r)$.

We have $\partial_r e^{rt} = te^{rt}$, hence we obtain the **DERIVATIVE OF THE KEY IDENTITY**

$$L(te^{rt}) = p'(r)e^{rt} + p(r)te^{rt}$$

In Case 2 we have $p(r) = (r - r_1)^2$, $p'(r) = 2(r - r_1)$ and

$$L(te^{rt}) = (r - r_1)^2 e^{rt} + 2(r - r_1)te^{rt}$$

With $r = r_1$ we obtain $L(te^{rt}) = 0$, so we found our second solution $Y_2(t) = te^{rt}$.

RECIPE: If we have two equal roots $r_1 = r_2$ we use $Y_1(t) = e^{r_1 t}$, $Y_2(t) = te^{r_1 t}$

Case 3: $a_1^2 - 4a_0 < 0$ In this case the quadratic formula gives us two complex roots

$$r_1 = \alpha + i\beta$$
, $r_2 = \alpha - i\beta$ with $\alpha = -\frac{1}{2}a_1$, $\beta = \frac{1}{2}\sqrt{4a_0 - a_1^2}$

Note that

$$e^{it} = \cos t + i \sin t$$

which gives

$$\frac{e^{it} + e^{-it}}{2} = \cos t, \qquad \frac{e^{it} - e^{-it}}{2} = \sin t$$

The two solutions $\tilde{Y}_1(t) = e^{r_1 t}$, $\tilde{Y}_2(t) = e^{r_2 t}$ form a fundamental set of solutions, and the general solution is

$$y(t) = c_1 \tilde{Y}_1(t) + c_2 \tilde{Y}_2(t)$$

For initial conditions $y(t_0) = y_0$, $y'(t_0) = y'_0$ with $y_0, y'_0 \in \mathbb{R}$ we will get $c_1, c_2 \in \mathbb{C}$, but the resulting function $y(t) = c_1 \tilde{Y}_1(t) + c_2 \tilde{Y}_2(t)$ will be real-valued.

It is easier to choose another fundamental set of solutions: we can use

$$\begin{aligned} Y_1(t) &= \tfrac{1}{2} \left(\tilde{Y}_1(t) + \tilde{Y}_2(t) \right) = \tfrac{1}{2} \left(e^{(\alpha + i\beta)t} + e^{(\alpha - i\beta)t} \right) = e^{\alpha t} \tfrac{1}{2} \left(e^{i\beta t} + e^{-i\beta t} \right) = e^{\alpha t} \cos(\beta t) \\ Y_2(t) &= \tfrac{1}{2i} \left(\tilde{Y}_1(t) - \tilde{Y}_2(t) \right) = \tfrac{1}{2i} \left(e^{(\alpha + i\beta)t} - e^{(\alpha - i\beta)t} \right) = e^{\alpha t} \tfrac{1}{2i} \left(e^{i\beta t} + e^{-i\beta t} \right) = e^{\alpha t} \sin(\beta t) \end{aligned}$$

RECIPE: If we have two complex roots $r_1 = \alpha + i\beta$ and $r_2 = \alpha - i\beta$ we use $Y_1(t) = e^{\alpha t} \cos(\beta t)$, $Y_2(t) = e^{\alpha t} \sin(\beta t)$

Example 1: y'' - 5y' + 6y = 0 gives the characteristic equation $r^2 - 5r + 6 = 0$.

The roots are $r_1 = 2$, $r_2 = 3$, hence we get $Y_1(t) = e^{2t}$, $Y_2(t) = e^{3t}$.

Example 2: y'' - 4y' + 4y gives the characteristic equation $r^2 - 4r + 4 = 0$.

The roots are $r_1 = r_2 = 2$, hence we get $Y_1(t) = e^{2t}$, $Y_2(t) = te^{2t}$.

Example 3: y'' + y = 0 gives the characteristic equation $r^2 + 1 = 0$.

The roots are $r_1 = i$, $r_2 = -i$, hence we get $Y_1(t) = \cos t$, $Y_2(t) = \sin t$.

Example 4: y'' + 4y + 13y = 0 gives the characteristic equation $r^2 + 4r + 13 = 0$.

The roots are $r_1 = -2 + 3i$, $r_2 = -2 - 3i$, hence we get $Y_1(t) = e^{-2t} \cos(3t)$, $Y_2(t) = e^{-2t} \sin(3t)$.

General case: ODE of order n

We have the homogeneous ODE

$$\underbrace{y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_0y}_{Ly} = 0$$

with constants $a_0, ..., a_{n-1} \in \mathbb{R}$. We need to find solutions $Y_1(t), ..., Y_n(t)$ which are **linearly independent** (i.e., we cannot write one function as a linear combination of the other functions).

RECIPE: try to find solutions of the form $y(t) = e^{rt}$.

Then $y'(t) = re^{rt}$, ..., $y^{(n)}(t) = r^n e^{rt}$, and plugging this into the ODE gives

$$Le^{rt} = (r^n + a_{n-1}r^{n-1} + a_0)e^{rt}$$

We call $p(t) = (r^n + a_{n-1}r^{n-1} + a_0)$ the **characteristic polynomial**. This gives the **KEY IDENTITY**

$$\left| Le^{rt} = p(r)e^{rt} \right| \tag{2}$$

Taking partial derivatives of the key identity with respect to r gives

$$L(te^{rt}) = p'(r)e^{rt} + p(r)te^{rt} L(t^2e^{rt}) = p''(r)e^{rt} + 2p'(rt)te^{rt} + p(r)t^2e^{rt}$$
(3)

STEP 1: Find the solutions $r_1, ..., r_n$ of the equation p(r) = 0. According to the fundamental theorem of algebra there are roots $r_1, ..., r_n \in \mathbb{C}$ such that

$$p(r) = (r - r_1) \cdots (r - r_n)$$

We may not be able to find formulas for the roots (actually, for $n \ge 5$ one cannot in general express r_j in terms of $\sqrt{\cdot}$, $\sqrt[3]{\cdot}$ etc). We have a polynomial with real coefficients a_0, \ldots, a_{n-1} . If we have p(r) = 0 then we can take the complex conjugate and obtain $p(\overline{r}) = 0$ where $\overline{x + iy} = x - iy$ denotes the complex conjugate. Hence we have

- real roots
- pairs of complex conjugate roots $\alpha + i\beta$ and $\alpha i\beta$

STEP 2: The fundamental set of solutions $Y_1(t), \dots, Y_n(t)$ is given by the following functions:

- for a simple real root r use e^{rt}
- for a real root r of multiplicity m use e^{rt} , te^{rt} ,..., $t^{m-1}e^{rt}$
- for simple complex conjugate roots $\alpha + i\beta$, $\alpha i\beta$ use $e^{\alpha t} \cos(\beta t)$, $e^{\alpha t} \sin(\beta t)$
- for complex conjugate roots $\alpha + i\beta$, $\alpha i\beta$ of multiplicity m use $e^{\alpha t} \cos(\beta t), \dots, t^{m-1} e^{\alpha t} \cos(\beta t)$ and $e^{\alpha t} \sin(\beta t), \dots, t^{m-1} e^{\alpha t} \sin(\beta t)$

Justification for multiple roots: Assume e.g. that p(r) has a triple root r_1 , then we have

$$p(r) = (r - r_1)^3 q(r)$$

This implies $p(r_1) = 0$, $p'(r_1) = 0$, $p''(r_1) = 0$. Hence the key identities (2), (3) imply

$$Le^{r_1t} = 0,$$
 $L(te^{r_1t}) = 0,$ $L(t^2e^{r_1t}) = 0$

Example: Consider the 7th order ODE $(D-1)^3(D^2+4D+13)^2y=0$.

The characteristic polynomial is $p(r) = (r-1)^3(r^2+4r+13)^2$.

We obtain a triple root 1 and double roots -2+3i, -2-3i.

Therefore we obtain the fundamental set of the seven solutions

$$e^{t}$$
, te^{t} , $t^{2}e^{t}$,
 $e^{-2t}\cos(3t)$, $te^{-2t}\cos(3t)$,
 $e^{-2t}\sin(3t)$, $te^{-2t}\sin(3t)$