2nd order linear ODE with constant coefficients

The ODE

$$y'' + a_1 y'(t) + a_0 y(t) = g(t)$$

is called **homogeneous** if g(t) = 0, otherwise **inhomogeneous**. With $D := \frac{d}{dt}$ we can write this as

$$(D^2 + a_1D + a_0)y = g$$

Note that the operator $L := (D^2 + a_1D + a_0)$ is **linear**: we have for a functions u, v and $c \in \mathbb{R}$:

$$L(cu) = cLu, \qquad L(u+v) = Lu + Lv$$

Solving a homogeneous 2nd order linear ODE with constant coefficients

Example: Consider the initial value problem

$$y'' + 3y' + 2y = 0$$

$$y(0) = y_0, \quad y'(0) = y'_0$$
(1)

with given values y_0, y'_0 .

We try to find a solution of the form $y(t) = e^{rt}$: Plugging this in gives

$$(D^2 + 3D + 2)e^{rt} = (r^2 + 3r + 2)e^{rt} = 0$$

Since $e^{rt} \neq 0$ we must have

$$r^2 + 3r + 2 = 0$$

The quadratic formula gives two solutions:

$$r = \frac{-3 \pm \sqrt{9 - 8}}{2}, \qquad r_1 = -1, \quad r_2 = -2$$

Hence we get two solutions of the ODE (1)

$$Y_1(t) = e^{-t}, Y_2(t) = e^{-2t}$$

Note that also c_1e^{-t} and c_2e^{-2t} are solutions of $(D^2+3D+2)y=0$, and so is

$$y(t) = c_1 Y_1(t) + c_2 Y_2(t)$$
(2)

for any $c_1, c_2 \in \mathbb{R}$. Here

$$y(t) = c_1 e^{-t} + c_2 e^{-2t}$$
$$y'(t) = -c_1 e^{-t} - 2c_2 e^{-2t}$$

For the initial value problem $y(0) = y_0$, $y'(0) = y'_0$ we plug in t = 0 and get

$$y(0) = c_1 + c_2 = y_0$$

$$y'(0) = -c_1 - 2c_2 = y'_0$$

This is a linear system of two equations for two unknown values c_1, c_2 . We can eliminate c_1 by adding the two equations:

$$-c_2 = y_0 + y_0'$$

which gives c_2 . Then we can find c_1 from the first equation $c_1 = y_0 - c_2$.

Result: For any initial conditions $y(0) = y_0$, $y'(0) = y'_0$ we obtain a solution $y(t) = c_1Y_1(t) + c_2Y_2(t)$. We have uniqueness for the solution of the initial value problem. Hence the general solution of the homogeneous **ODE** Ly = 0 is given by (2).

Solving an inhomogeneous 2nd order linear ODE with constant coefficients

Example: Consider the initial value problem from the previous class

$$y'' + 3y' + 2y = t (3)$$

$$y(0) = 2, \quad y'(0) = -1$$
 (4)

We first want to find some function Y(t) satisfying LY = g ("particular solution").

Here the right-hand side function g(t) is a polynomial $g(t) = c_0 + c_1 t$.

If we apply the operator $L = D^2 + 3D + 2$ to a polynomial $Y(t) = C_0 + C_1 t$ we get again a polynomial $LY = c_0 + c_1 t$:

$$(D^2 + 3D + 2)Y = Y'' + 3Y' + 2Y = 0 + 3C_1 + 2(C_0 + C_1t) = (2C_0 + 3C_1) + 2C_1t$$

We want to have $LY = g = 0 + 1 \cdot t$, so we need to find C_0, C_1 satisfying

$$2C_0 + 3C_1 = 0$$
$$2C_1 = 1$$

The second equation gives $C_1 = \frac{1}{2}$, then the first equation gives $C_0 = -\frac{3}{2}C_1 = -\frac{3}{4}$. This gives the particular solution

$$Y(t) = -\frac{3}{4} + \frac{1}{2}t$$

satisfying LY = g.

Now assume that y(t) is any function satisfying Ly = g. Taking the difference of the last two equations gives

$$L(y - Y) = 0,$$

i.e., the function u(t) = y(t) - Y(t) satisfies the homogeneous ODE Lu = 0. But any solution of the homogeneous ODE must have the form

$$u(t) = c_1 Y_1(t) + c_2 Y_2(t)$$

yielding the general solution of the inhomogeneous problem:

$$y(t) = Y(t) + c_1 Y_1(t) + c_2 Y_2(t)$$

For the ODE (3) we get the general solution

$$y(t) = \left(-\frac{3}{4} + \frac{1}{2}t\right) + c_1 e^{-t} + c_2 e^{-2t}$$

$$y'(t) = \frac{1}{2} - c_1 e^{-t} - 2c_2 e^{-2t}$$

For the initial value problem y(0) = 2, y'(0) = -1 we plug in t = 0 and get

$$y(0) = -\frac{3}{4} + c_1 + c_2 = 2$$

$$y'(0) = \frac{1}{2} - c_1 - 2c_2 = -1$$

yielding the linear system

$$c_1 + c_2 = \frac{11}{4}$$
$$-c_1 - 2c_2 = -\frac{3}{2}$$

Adding the two equations gives $-c_2 = \frac{5}{4} \iff c_2 = -\frac{5}{4}$. Now the first equation gives $c_1 = \frac{11}{4} - c_2 = 4$. Hence the solution of the initial value problem (3), (4) is

$$y(t) = \left(-\frac{3}{4} + \frac{1}{2}t\right) + 4e^{-t} - \frac{5}{4}e^{-2t}$$