Linear ODE with constant coefficients:

find particular solution using "Method of undetermined coefficients"

We have the inhomogeneous ODE

$$\underbrace{y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_0y}_{Ly} = 0$$

with constants $a_0, \ldots, a_{n-1} \in \mathbb{R}$.

1. solve homogeneous ODE Ly = 0:

find roots $r_1, \ldots, r_n \in \mathbb{C}$ of characteristic equation $r^n + a_{n-1}r^{n-1} + \cdots + a_0 = 0$

for real root r of multiplicity m use $e^{rt}, \dots, t^{m-1}e^{rt}$

for complex conjugate roots $\alpha + i\beta$, $\alpha - i\beta$ of multiplicity m

use
$$e^{\alpha t}\cos(\beta t), \dots, t^{m-1}e^{\alpha t}\cos(\beta t)$$
 and $e^{\alpha t}\sin(\beta t), \dots, t^{m-1}e^{\alpha t}\sin(\beta t)$

this gives linearly independent functions $Y_1(t), \dots, Y_n(t)$

2. **find particular solution** Y(t) satisfying LY = f

If the function f(t) has a special form (see cases below) we can use the "method of undetermined coefficients":

- try a particular solution Y(t) of the same form, but with unknown coefficients
- plug this into LY = f,
- compare terms on both sides, solve for the unknown coefficients

Recall the **key identities** (obtained by repeatedly applying ∂_r)

$$Le^{rt} = p(r)e^{rt} \tag{1}$$

$$L(te^{rt}) = p'(r)e^{rt} + p(r)te^{rt}$$
(2)

$$L(t^{2}e^{rt}) = p''(r)e^{rt} + 2p'(r)te^{rt} + p(r)t^{2}e^{rt}$$
(3)

Case 1: exponential function $f(t) = \alpha_0 e^{\mu t}$

Try $f(t) = A_0 e^{\mu t}$ with unknown coefficient A_0

this works if μ is NOT a root of the characteristic equation.

Example 1: $y'' - 4y' + 13y = 3e^{2t}$, here $p(r) = r^2 - 4r + 13$ and $r_1 = 2 + 3i$, $r_2 = 2 - 3i$

Hence we use $Y(t) = A_0 e^{2t}$ and obtain $LY = A_0 (4 - 4 \cdot 2 + 13) e^{2t} \stackrel{!}{=} 3e^{2t}$

This gives $9A_0 = 3$, so $A_0 = \frac{1}{3}$ and $Y(t) = \frac{1}{3}e^{2t}$.

If μ is a root of the characteristic equation with multiplicity m use $f(t) = A_0 t^m e^{\mu t}$

Example 2: $y'' - 4y' + 4y = 3e^{2t}$, here $p(r) = r^2 - 4r + 4$ and $r_1 = r_2 = 2$

Hence we use $Y(t) = A_0 t^2 e^{2t}$. We use the **product rule** (uv)' = u'v + uv', (uv)'' = u''v + 2u'v' + uv'' and obtain

$$LY = A_0 \left(\left(2e^{2t} + 8te^{2t} + t^2 4e^{2t} \right) - 4\left(2te^{2t} + t^2 2e^{2t} \right) + 4\left(t^2 e^{2t} \right) \right) = A_0 2e^{2t} \stackrel{!}{=} 3e^{2t}$$
 (4)

Note that all the t^2e^{2t} and te^{2t} terms cancel out.

This is no coincidence: for a double root r = 2 we have p(2) = 0 and p'(2) = 0. Hence the **key identity** (3) gives

$$L(t^{2}e^{2t}) = \underbrace{p''(2)}_{2}e^{2t} + 2\underbrace{p'(2)}_{0}te^{2t} + \underbrace{p(2)}_{0}t^{2}e^{2t} = 2e^{2t}$$

since p''(t) = 2. We can use the key identities to simplify our work.

We obtain from (4) that $2A_0 = 3$ or $A_0 = \frac{3}{2}$ and $Y(t) = \frac{3}{2}t^2e^{2t}$

Case 2: polynomial times exponential function $f(t) = (\alpha_0 t^d + \alpha_1 t^{d-1} + \dots + \alpha_d) e^{\mu t}$

If μ is NOT a root of the characteristic equation: use $Y(t) = (A_0 t^d + A_1 t^{d-1} + \dots + A_d) e^{\mu t}$

If μ is a root of the characteristic equation with multiplicity m use $Y(t) = t^m (A_0 t^d + A_1 t^{d-1} + \dots + A_d) e^{\mu t}$

Example 3: $y'' - 4y' + 13y = te^{3t}$, here $p(r) = r^2 - 4r + 13$ and $r_1 = 2 + 3i$, $r_2 = 2 - 3i$

Hence we use $Y(t) = (A_0t + A_1)e^{3t}$. We now have to find $LY = A_0L(te^{2t}) + A_1L(e^{2t})$. Here we use the key identities (1), (2): With $p(3) = 3^2 - 4 \cdot 3 + 13 = 10$, p'(r) = 2r - 4, p'(3) = 2 we get

$$Le^{3t} = p(3)e^{3t} = 10e^{3t}, L(te^{3t}) = p'(3)e^{3t} + p(3)te^{3t} = 2e^{3t} + 10te^{3t}$$
$$LY = (A_0(2+10t) + 10A_1)e^{3t} \stackrel{!}{=} (1 \cdot t + 0)e^{3t}$$

Hence
$$10A_0 = 1$$
 and $2A_0 + 10A_1 = 0$. This gives $A_0 = \frac{1}{10}$ and $A_1 = -\frac{1}{50}$, so $Y(t) = \left(\frac{1}{10}t - \frac{1}{50}\right)e^{3t}$

Special case $\mu = 0$: polynomial $f(t) = \alpha_0 t^d + \alpha_1 t^{d-1} + \dots + \alpha_d$

If 0 is NOT a root of the characteristic equation: use $Y(t) = A_0 t^d + A_1 t^{d-1} + \dots + A_d$. If 0 is a root of the characteristic equation with multiplicity m use $Y(t) = t^m (A_0 t^d + A_1 t^{d-1} + \dots + A_d)$

Case 3: exponential function times sine/cosine $f(t) = \alpha_0 \cos(\nu t) e^{\mu t} + \beta_0 \sin(\nu t) e^{\mu t}$

If $\mu + i\nu$ is NOT a root of the characteristic equation: use $Y(t) = A_0 \cos(\nu t) e^{\mu t} + B_0 \sin(\nu t) e^{\mu t}$

If $\mu + i\nu$ is a root of the characteristic equation with multiplicity m use $Y(t) = t^m \left(A_0 \cos(\nu t) e^{\mu t} + B_0 \sin(\nu t) e^{\mu t} \right)$

Example 4: $y'' - 4y' + 4y = \sin t$. Recall $r_1 = r_2 = 2$. Here we have $\mu = 0$, $\nu = 1$, so $\mu + i\nu = i$ is not a root of the characteristic equation.

Use $Y(t) = A_0 \cos t + B_0 \sin t$, then

$$LY = Y'' - 4Y' + 4Y = A_0(-\cos t + 4\sin t + 4\cos t) + A_1(-\sin t - 4\cos t + 4\sin t)$$
$$= (3A_0 - 4A_1)\cos t + (4A_0 + 3A_1)\sin t \stackrel{!}{=} 0 \cdot \cos t + 1 \cdot \sin t$$

Hence $3A_0 - 4A_1 = 0$ and $4A_0 + 3A_1 = 1$. This linear system has the solution $A_0 = \frac{4}{25}$, $A_1 = \frac{3}{25}$, so $Y(t) = (4\cos t + 3\sin t)/25$ **Example 5:** $y'' - 4y' + 4y = e^{-t}\sin t$. Recall $r_1 = r_2 = 2$. Here we have $\mu = -1$, $\nu = 1$, so $\mu + i\nu = -1 + i$ is not a root of the characteristic equation.

Here we need to use $Y(t) = A_0 e^{-t} \cos t + A_1 e^{-t} \sin t$. I skip the details, but this will give $A_0 = \frac{3}{50}$, $B_0 = \frac{2}{25}$.

General case (includes all of the above) $f(t) = (\alpha_0 t^d + \dots + \alpha_d) \cos(\nu t) e^{\mu t} + (\beta_0 t^d + \dots + \beta_d) \sin(\nu t) e^{\mu t}$

Check whether $\mu + i\nu$ is a root of the characteristic equation, let m denote the multiplicity $(m = 0 \text{ if } \mu + i\nu \text{ is not a root of the characteristic equation})$.

Use
$$Y(t) = t^m \left((A_0 t^d + \dots + A_d) \cos(\nu t) e^{\mu t} + (B_0 t^d + \dots + B_d) \sin(\nu t) e^{\mu t} \right)$$

Note:

• this includes all previous cases:

for $\mu = 0$ we get $f(t) = (\alpha_0 t^d + \dots + \alpha_d) \cos(\nu t) + (\beta_0 t^d + \dots + \beta_d) \sin(\nu t)$

for v = 0 we get $f(t) = (\alpha_0 t^d + \dots + \alpha_d)e^{\mu t}$

for d = 0 we get $f(t) = \alpha_0 \cos(\nu t)e^{\mu t} + \beta_0 \sin(\nu t)e^{\mu t}$

• we have to use all terms, even if some coefficients in f(t) are zero.

Example 6: for $f(t) = t^2 \sin(7t)$ we have to use $Y(t) = t^m \left((A_0 t^2 + A_1 t + A_2) \cos(7t) + (B_0 t^2 + B_1 + B_2) \sin(7t) \right)$ with six unknown coefficients.

• If f(t) is a sum of several terms we can find the corresponding particular solutions separately, and then add them together.

Example 7: $y'' - 2y' + y = t \sin t + \cos t + \cos(2t)$

characteristic equation is $r^2 - 2r + 1 = 0$, hence $r_1 = 1$, $r_2 = -1$. This gives the fundamental set $Y_1(t) = e^t$, $Y_2(t) = e^{-t}$. We first consider $f_{(1)}(t) = t \sin t + \cos t$, let $Y_{(1)}(t) = (A_0t + A_1) \cos t + (B_0t + B_1) \sin t$ and find the constants A_0, A_1, B_0, B_1 :

$$Y_{(1)}(t) = \left(\frac{1}{2}t + \frac{1}{2}\right)\cos t + (0 \cdot t - 1)\sin t$$

Then we consider $f_{(2)}(t) = \cos(2t)$, let $Y_{(2)}(t) = A'_0 \cos(2t) + B'_0 \sin(2t)$ and find the constants A'_0, B'_0 .

$$Y_{(2)}(t) = -\frac{3}{25}\cos(2t) - \frac{4}{25}\sin(2t)$$

Then the general solution of the ODE is

$$y(t) = c_1 e^t + c_2 e^{-t} + Y_{(1)}(t) + Y_{(2)}(t)$$

Alternative method for sine/cosine terms:

We can write $f(t) = \alpha e^{\mu t} \cos(\nu t) + \beta e^{\mu t} \sin(\nu t)$ with $\alpha, \beta \in \mathbb{R}$ as the real part of $ce^{(\mu + i\nu)t}$ with complex $c = \alpha - i\beta$:

$$\operatorname{Re}\left[(\alpha - i\beta)e^{(\mu + i\nu)t}\right] = \alpha e^{\mu t}\cos(\nu t) + \beta e^{\mu t}\sin(\nu t)$$

First assume that $\mu + i\nu$ is **not** a root of the characteristic polynomial p(r).

- use the key identity: $Le^{rt} = p(r)e^{rt}$ with $r = \mu + i\nu$
- let $C = \frac{c}{p(\mu + i\nu)}$, then $L(Ce^{(\mu + i\nu)t}) = ce^{(\mu + i\nu)t}$ and taking the real part:

$$L\operatorname{Re}\left(Ce^{(\mu+i\nu)t}\right) = \operatorname{Re}\left(ce^{(\mu+i\nu)t}\right) = f$$

i.e., our particular solution is $Y(t) = \text{Re}\left(Ce^{(\mu+i\nu)t}\right) = e^{\mu t} \text{Re}\left(\frac{(\alpha-i\beta)e^{i\nu t}}{p(\mu+i\nu)}\right)$

This is the so-called **zero degree formula** if $\mu + i\nu$ is not a root of p(r).

Example 8: $y'' - 2y' + y = 2\cos t + 3\sin t$. Here $\mu + i\nu = i$.

- $f(t) = 2\cos t + 3\sin t = \text{Re}\left(ce^{(\mu+i\nu)t}\right)$ with c = 2 3i and $\mu + i\nu = i$
- $p(r) = r^2 2r + 1$ and $p(i) = i^2 2i + 1 = -2i$
- find $C = \frac{c}{p(\mu + i\nu)} = \frac{2 3i}{-2i} = i + \frac{3}{2}$
- hence $Y(t) = \text{Re}\left[(i + \frac{3}{2})(\cos t + i\sin t)\right] = \frac{3}{2}\cos t \sin t$

Example 9: $y'' + y = 2\cos t + 3\sin t$. Here $p(r) = r^2 + 1$ and $\mu + i\nu = i$ which is a root of p(r) with **multipicity** m = 1.

Hence we need to use $te^{(\mu+i\nu)t}$:

- use the key identity: $L(te^{rt}) = p'(r)e^{rt}$ with $r = \mu + i\nu$ (since p(r) = 0)
- here p'(r) = 2r and p'(i) = 2i
- find $C = \frac{c}{p'(\mu + i\nu)} = \frac{2 3i}{2i} = -i \frac{3}{2}$
- hence $Y(t) = \text{Re}\left(Cte^{(\mu+i\nu)t}\right) = \text{Re}\left[\left(-i \frac{3}{2}\right)t(\cos t + i\sin t)\right] = t\left(-\frac{3}{2}\cos t + \sin t\right)$
- here we get $Y(t) = te^{\mu t} \operatorname{Re} \left(\frac{(\alpha i\beta)e^{i\nu t}}{p'(\mu + i\nu)} \right)$. This is the **zero degree formula for a root of multiplicity 1**.

If $\mu + i\nu$ is a **root of multiplicity** m we obtain the **zero degree formula** $Y(t) = t^m e^{\mu t} \operatorname{Re} \left(\frac{(\alpha - i\beta)e^{i\nu t}}{p^{(m)}(\mu + i\nu)} \right)$