
Final Exam Solutions: MATH 410
Thursday, 14 December 2017
Professor David Levermore

1. [10] Let {xn}n∈N be a sequence in R. Give negations of each of the following assertions.

(a) For every ε > 0 there exists an nε ∈ N such that

m,n > nε =⇒ |xm − xn| < ε .

(b) lim
n→∞

xn =∞ .

Solution (a). There exists an ε > 0 such that for every N ∈ N there exists m,n ∈ N
such that

m,n > N and |xm − xn| ≥ ε .

Solution (b). There are several acceptable answers. The shortest is

lim inf
n→∞

xn <∞ .

This could be expanded as

∃M > 0 such that xn ≤M frequently as n→∞ ,

which could be expanded further as

∃M > 0 such that ∀m ∈ N ∃n > m such that xn ≤M .

The last two answers can also be obtained by first expressing lim
n→∞

xn =∞ either as

∀M > 0 xn > M eventually as n→∞ ,

or as

∀M > 0 ∃m ∈ N such that ∀n > m xn > M ,

and then simply negating. �

2. [15] Let {ak}k∈N and {bk}k∈N be bounded, positive sequences in R.
(a) [10] Prove that

lim sup
k→∞

(akbk) ≤
(

lim sup
k→∞

ak

)(
lim sup
k→∞

bk

)
.

(b) [5] Give an example for which equality does not hold above.

Remark. This problem is from Exam 1.

Solution (a). Let ck = akbk for every k ∈ N. For every k ∈ N we define

ak = sup{al : l ≥ k} , bk = sup{bl : l ≥ k} , ck = sup{cl : l ≥ k} .

Because the sequences {ak}k∈N, {bk}k∈N, and {ck}k∈N are bounded above and positive,
for every k ∈ N we have

0 < ak <∞ , 0 < bk <∞ , 0 < ck <∞ .
1
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The real sequences {ak}k∈N, {bk}k∈N, and {ck}k∈N are nonincreasing because their terms
are supremums of successively smaller sets. Moreover, they are bounded below be-
cause {ak}k∈N, {bk}k∈N, and {ck}k∈N are positive. Therefore they converge by Montonic
Sequence Convergence Theorem. By the definition of lim sup we have

lim sup
k→∞

ak = lim
k→∞

ak , lim sup
k→∞

bk = lim
k→∞

bk , lim sup
k→∞

ck = lim
k→∞

ck .

The crucial observation is that for every k ∈ N we have

cl = albl ≤ akbk for every l ≥ k ,

which yields the inequality

ck = sup{cl : l ≥ k} ≤ akbk .

This inequality and the properties of limits then imply

lim sup
k→∞

akbk = lim sup
k→∞

ck = lim
k→∞

ck ≤ lim
k→∞

akbk =
(

lim
k→∞

ak

)(
lim
k→∞

bk

)
=
(

lim sup
k→∞

ak

)(
lim sup
k→∞

bk

)
.

This is the inequality that we were asked to prove. �

Solution (b). Let ρ > 1. Let {ak}k∈N be any bounded, positive sequence such that

lim inf
k→∞

ak =
1

ρ
, and lim sup

k→∞
ak = ρ .

For example, we can simply take

ak = ρ(−1)
k

=

ρ for k even
1

ρ
for k odd .

Set bk = 1/ak for every k ∈ N. Then

lim sup
k→∞

bk = lim sup
k→∞

1

ak
=

1

lim infk→∞ ak
= ρ ,

whereby {ak}k∈N and {bk}k∈N are bounded, positive sequences in R such that

lim sup
k→∞

akbk = 1 < ρ2 =
(

lim sup
k→∞

ak

)(
lim sup
k→∞

bk

)
.

So equality does not hold for the bounded, positive sequences {ak}k∈N and {bk}k∈N. �

3. [15] Let f : (a, b) → R be differentiable at a point c ∈ (a, b) with f ′(c) < 0. Show that
there exists a δ > 0 such that

x ∈ (c− δ, c) ⊂ (a, b) =⇒ f(x) > f(c) ,

x ∈ (c, c+ δ) ⊂ (a, b) =⇒ f(c) > f(x) ,

Remark. This problem is from Exam 2. It asks you to prove the Transversality Lemma.

Solution. Because f is differentiable at c we know that

f ′(c) = lim
x→c

f(x)− f(c)

x− c
.



3

By the ε-δ definition of limit, this means that for every ε > 0 there exists δ > 0 such
that for every x ∈ (a, b) we have

0 < |x− c| < δ =⇒
∣∣∣∣f(x)− f(c)

x− c
− f ′(c)

∣∣∣∣ < ε .

Because f ′(c) < 0 we may take ε = −f ′(c) above to conclude that there exists δ > 0
such that for every x ∈ (a, b) we have

0 < |x− c| < δ =⇒
∣∣∣∣f(x)− f(c)

x− c
− f ′(c)

∣∣∣∣ < −f ′(c) .
Because c ∈ (a, b) we may assume that δ is small enough so that (c− δ, c+ δ) ⊂ (a, b).
Then we have

0 < |x− c| < δ =⇒ 2f ′(c) <
f(x)− f(c)

x− c
< 0 .

This implies that x− c and f(x)− f(c) will have opposite signs when 0 < |x− c| < δ.
It follows that

x ∈ (c− δ, c) =⇒ x− c < 0 =⇒ f(x)− f(c) > 0 ,

x ∈ (c, c+ δ) =⇒ x− c > 0 =⇒ f(x)− f(c) < 0 .

Because (c− δ, c) ⊂ (a, b) and (c, c+ δ) ⊂ (a, b), the result follows. �

4. [20] Let f : [a, b] → R and g : [a, b] → R be Riemann integrable over [a, b]. Prove that
f + g is Riemann integrable over [a, b].

Remark. This problem is from Homework 12.

Solution. Let Df , Dg, and Df+g denote the points in [a, b] at which f , g, and f + g
respectively are discontinuous. It is clear that Df+g ⊂ Df ∪ Dg because f + g is
continuous at every point where both f and g are continuous. Because f and g are
Riemann integrable over [a, b], one direction of the Lebesgue Theorem implies that Df

and Dg have measure zero. Because the union of two measure zero sets also has measure
zero, and because any subset of a measure zero set also has measure zero, we see that
Df+g ⊂ Df ∪Dg has measure zero. The other direction of the Lebesgue Theorem then
implies that f + g is Riemann integrable over [a, b]. �

Alternative Solution. Let ε > 0. Because f and g are Riemann integrable over [a.b],
the Darboux Theorem implies that there exist partitions P f

ε and P g
ε of [a.b] such that

0 ≤ U(f, P f
ε )− L(f, P f

ε ) <
ε

2
, 0 ≤ U(g, P g

ε )− L(f, P g
ε ) <

ε

2
.

Set Pε = P f
ε ∨ P g

ε . Then

U(f + g, Pε) ≤ U(f, Pε) + U(g, Pε) ≤ U(f, P f
ε ) + U(g, P g

ε ) ,

L(f + g, Pε) ≥ L(f, Pε) + L(g, Pε) ≥ L(f, P f
ε ) + L(g, P g

ε ) .

Upon combining the above inequalities we find that

0 ≤ U(f + g, Pε)− L(f + g, Pε)

≤ U(f, P f
ε )− L(f, P f

ε ) + U(g, P g
ε )− L(g, P g

ε ) <
ε

2
+
ε

2
= ε .
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Because such a Pε can be found for every ε > 0, the Darboux Theorem implies that
f + g is Riemann integrable. �

Remark. The second solution gives a lot more. It is just a few steps away from showing
that the intergral of f + g is the sum of the integrals of f and g.

5. [25] Consider a function g defined by

g(x) =
∞∑
k=0

1

3k
sin(2kx) ,

for every x ∈ R for which the above series converges.

(a) [10] Show that g is defined for every x ∈ R.

(b) [15] Show that g is continuously differentiable over R and that

g′(x) =
∞∑
k=0

2k

3k
cos(2kx) .

Remark. This problem is similar to one from Homework 15.

Solution (a). Because
∞∑
k=0

1

3k
is a geometric series with r = 1

3
< 1 ,

it is convergent. Because for every k ∈ N we have the bound∣∣∣∣ 1

3k
sin(2kx)

∣∣∣∣ ≤ 1

3k
for every x ∈ R ,

the absolute comparison test says that the series defining g(x) converges absolutely for
every x ∈ R. �

Solution (b). For every n ∈ N define the function gn by

gn(x) =
n∑
k=0

1

3k
sin(2kx) for every x ∈ R .

Then gn is continuously differentiable with

g′n(x) =
n∑
k=0

2k

3k
cos(2kx) for every x ∈ R .

For every k ∈ N we have the bounds∥∥∥∥ 1

3k
sin(2kx)

∥∥∥∥
B(R)
≤ 1

3k
,

∥∥∥∥2k

3k
cos(2kx)

∥∥∥∥
B(R)
≤ 2k

3k
.

Then because the geometric series
∞∑
k=0

1

3k
,

∞∑
k=0

2k

3k
,

are convergent, the Weierstrass M -Test implies that the sequences of functions {gn}n∈N
and {g′n}n∈N converge uniformly. Therefore gn → g uniformly over R.
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Let g′n → h uniformly over R. Then h is continuous and g is continuously differentiable
with g′ = h. Therefore

g′(x) = h(x) =
∞∑
k=0

2k

3k
cos(2kx) .

�

6. [25] For every n ∈ Z+ define hn(x) = nx(1 + nx)−2 for every x ∈ [0,∞).

(a) [5] Prove that hn → 0 pointwise over [0,∞).

(b) [10] Prove that this limit is not uniform over [0,∞).

(c) [10] Prove that this limit is uniform over [δ,∞) for every δ > 0.

Solution (a). Because hn(0) = 0 for every n ∈ N, the convergence of {hn(x)} when
x = 0 is obvious.

Now let x ∈ (0,∞) and consider the sequence {hn(x)}. Then for every n ∈ Z+ we
have

0 < hn(x) =
nx

(1 + nx)2
<

1

nx
.

Let ε > 0. Pick nε ∈ N such that nε > 1/(xε). Then for every n ≥ nε we have

0 < hn(x) <
1

nx
≤ 1

nεx
< ε .

But this implies that {hn(x)} converges to zero as n→∞.

Therefore hn → 0 pointwise over [0,∞). �

Solution (b). We must show that there exists ε > 0 such that for every m ∈ N there
exists n > m and x ∈ [0,∞) such that hn(x) ≥ ε. This is easy to do. In fact, for every
n ∈ Z+ we have hn( 1

n
) = 1

4
. Therefore any ε ∈ (0, 1

4
) works. �

Solution (c). Let δ > 0. Then for every n ∈ Z+ and every x ∈ [δ,∞) we have

0 < hn(x) =
nx

(1 + nx)2
<

1

nx
≤ 1

nδ
.

Let ε > 0. Pick nε ∈ N such that nε > 1/(δε). Then for every n ≥ nε and every
x ∈ [δ,∞) we have

0 < hn(x) <
1

nδ
≤ 1

nεδ
< ε .

Therefore hn → 0 uniformly over [δ,∞). �

7. [20] Determine the set of a ∈ R for which the following formal infinite series converge.
Give your reasoning.

(a)
∞∑
n=1

an

n3n

(b)
∞∑
k=1

(
k2 + 1

k4 + 1

)a
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Remark. Part (b) of this problem is from Exam 1.

Solution (a). The series converges for every a ∈ [−3, 3) and diverges otherwise.

The cases |a| < 3 and |a| > 3 are best handled by the Ratio Test. Let bn = an/(n3n).
Because

lim
n→∞

|bn+1|
|bn|

= lim
n→∞

n

n+ 1

|a|
3

=
|a|
3
,

the Ratio Test then implies that this series converges absolutely for |a| < 3 and diverges
for |a| > 3.

The case a = −3 is best handled by the Alternating Series Test. Indeed, because the
sequence {

1

n

}∞
n=1

is decreasing and positive .

and because

lim
n→∞

1

n
= 0 ,

the Alternating Series Test shows that
∞∑
n=1

(−1)n
1

n
converges .

The case a = 3 reduces to the Harmonic Series
∞∑
n=1

1

n
, which diverges .

�

Solution (b). The series converges for a ∈ (1
2
,∞) and diverges otherwise. Because

k2 + 1

k4 + 1
∼ 1

k2
as k →∞ ,

we see that the original series should be compared with the p-series
∞∑
k=1

1

k2a
.

This is best handled by Two-Way Limit Comparison Test. Indeed, for every a ∈ R we
have

lim
k→∞

(
k2 + 1

k4 + 1

)a
1

k2a

= lim
k→∞

(
k4 + k2

k4 + 1

)a
= lim

k→∞

1 +
1

k2

1 +
1

k4


a

= 1 ,

so the Two-Way Limit Comparison Test implies that
∞∑
k=0

(
k2 + 1

k4 + 1

)a
converges ⇐⇒

∞∑
k=1

1

k2a
converges .

Because the p = 2a for the p-series, it converges for a ∈ (1
2
,∞) and diverges otherwise.

The same is thereby true for the original series. �
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8. [20] Let α ∈ (0, 1] and K ∈ R+ such that the function f : [a, b]→ R satisfy the Hölder
bound

|f(x)− f(y)| < K |x− y|α for every x, y ∈ [a, b] .

(a) Show that f is uniformly continuous over [a, b].

(b) Show that for every partition P of [a, b] one has

0 ≤ U(f, P )− L(f, P ) < |P |αK (b− a) .

Solution (a). Let ε > 0. Set δ = (ε/K)
1
α . Then for every x, y ∈ [a, b] we have

|x− y| < δ =⇒ |f(x)− f(y)| < K |x− y|α < K δα = ε .

Hence, f is uniformly continuous over [a, b]. �

Solution (b). Let P = [x0, x1, · · · , xn] be any partition of [a, b]. Then

0 ≤ U(f, P )− L(f, P ) =
n∑
k=1

(
mk −mk

)
(xk − xk−1) ,

where

mk = sup{f(x) : x ∈ [xk−1, xk]} , mk = inf{f(x) : x ∈ [xk−1, xk]} .

Because f is continuous over each [xk−1, xk], the Extreme-Value Theorem implies that
there exists points xk, xk ∈ [xk−1, xk] such that

mk = f(xk) and mk = f(xk) .

The Hölder continuity of f then gives

0 ≤ U(f, P )− L(f, P ) =
n∑
k=1

(
f(xk)− f(xk)

)
(xk − xk−1)

≤ K

n∑
k=1

|xk − xk|α(xk − xk−1) .

Because xk, xk ∈ [xk−1, xk] we have

|xk − xk| ≤ xk − xk−1 ≤ max{xm − xm−1 : m = 1, · · · , n} ≡ |P | ,

whereby

0 ≤ U(f, P )− L(f, P ) ≤ K

n∑
k=1

|P |α(xk − xk−1)

= K |P |α
n∑
k=1

(xk − xk−1) = K |P |α (b− a) .

�
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9. [25] Given the fact that for every x > −1 and every n ∈ Z+ we have

dn

dxn
log(1 + x) = (−1)n−1

(n− 1)!

(1 + x)n
,

prove that

log(1 + x) =
∞∑
k=1

(−1)k−1

k
xk for every x ∈ (−1, 1] ,

and that the series diverges for every real x /∈ (−1, 1].

Remark. This problem is similar to one in Homework 14.

Partial Solution. It is easy to show that the series converges for every x ∈ (−1, 1]
and diverges for every real x /∈ (−1, 1].

Let bk = (−1)k−1 1
k
xk. Because

lim
k→∞

|bk+1|
|bk|

= lim
k→∞

k

k + 1
|x| = |x| ,

the Ratio Test shows that the series converges absolutely when |x| < 1 and diverges
when |x| > 1. When x = 1 the Alternating Series Test shows that the series converges.
When x = −1 the series is proportional to the Harmonic Series, so it must diverge.
However, this is not a complete solution to the problem because these arguments do
not show that when the series converges, it converges to log(1 + x).

Solution. Let f(x) = log(1 + x) for every x > −1. We are given that for every x > −1
and every n ∈ Z+

f (n)(x) = (−1)n−1
(n− 1)!

(1 + x)n
,

whereby
f (n)(0) = (−1)n−1(n− 1)! for every n ∈ Z+ .

Therefore the nth-order Taylor approximation of f about 0 is

T n0 f(x) =
n∑
k=0

1

k!
f (k)(0)xk =

n∑
k=1

(−1)k−1

k
xk ,

which is the nth partial sum of the series. We must show that the associated Taylor
remainder,

Rn
0f(x) = f(x)− T n0 f(x) ,

vanishes as n→∞ for every x ∈ (−1, 1].

The Cauchy Remainder Theorem states that

Rn
0f(x) =

1

n!

∫ x

0

f (n+1)(t)(x− t)n dt

= (−1)n
∫ x

0

(x− t)n

(1 + t)n+1
dt = (−1)n

∫ x

0

(
x− t
1 + t

)n
dt

1 + t
.

Consider the substitution

s =
x− t
1 + t

=
1 + x

1 + t
− 1 , t+ 1 =

1 + x

1 + s
,

dt

1 + t
= − ds

1 + s
.
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Notice that s goes monotonically from x to 0 as t goes monotonically from 0 to x. This
substitution yields

Rn
0f(x) = (−1)n

∫ x

0

sn

1 + s
ds .

If x ≥ 0 then we have the bound∣∣Rn
0f(x)

∣∣ =

∫ x

0

sn

1 + s
ds ≤

∫ x

0

sn ds =
xn+1

n+ 1
.

This bound vanishes as n→∞ for every x ∈ [0, 1]. If x < 0 then we have the bound∣∣Rn
0f(x)

∣∣ =

∫ |x|
0

sn

1− s
ds <

1

1− |x|

∫ |x|
0

sn ds =
1

1− |x|
|x|n+1

n+ 1
.

This bound vanishes as n → ∞ for every x ∈ (−1, 0). Therefore for every x ∈ (−1, 1]
we have ∣∣Rn

0f(x)
∣∣→ 0 as n→∞ .

Collecting all of our results, we have shown that

log(1 + x) =
∞∑
k=1

(−1)k−1

k
xk for every x ∈ (−1, 1] ,

and that the series diverges for all real x /∈ (−1, 1]. �

10. [25] For every n ∈ Z+ define fn(x) = n(1 + nx)−2 for every x ∈ [0,∞).

(a) [10] Prove for every δ > 0 that

lim
n→∞

fn = 0 uniformly over [δ,∞) .

(b) [5] Prove for every δ > 0 that

lim
n→∞

∫ δ

0

fn = 1 .

(c) [10] Let g : [0, 1]→ R be continuous. Show that

lim
n→∞

∫ 1

0

fng = g(0) .

Solution (a). Let δ > 0. Because fn(x) = n(1 + nx)−2 is a decreasing function of x
over [0,∞), for every x ≥ δ we have

|fn(x)| =
∣∣∣∣ n

(1 + nx)2

∣∣∣∣ ≤ ∣∣∣∣ n

(1 + nδ)2

∣∣∣∣ < 1

n δ2
.

Let ε > 0. Pick nε ∈ N such that nε > 1/(δ2ε). Then for every n ≥ nε we have

|fn(x)| < 1

n δ2
≤ 1

nε δ2
< ε for every x ∈ [δ,∞) .

Therefore fn → 0 uniformly over [δ,∞). �
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Solution (b). Let δ > 0. By the First Fundamental Theorem of Calculus we have∫ δ

0

fn =

∫ δ

0

n

(1 + nx)2
dx = − 1

1 + nx

∣∣∣∣δ
0

= 1− 1

1 + nδ
.

Therefore

lim
n→∞

∫ δ

0

fn = lim
n→∞

(
1− 1

1 + nδ

)
= 1 .

Solution (c). Assertion (b) implies that

lim
n→∞

∫ 1

0

fn dx = 1 ,

whereby assertion (c) is equivalent to

lim
n→∞

∫ 1

0

fn(x)
(
g(x)− g(0)

)
dx = 0 .

But this will follow if we can show that for every ε > 0 we have

lim sup
n→∞

∫ 1

0

fn(x)
∣∣g(x)− g(0)

∣∣ dx ≤ ε .

Let ε > 0. Because g is continous at 0, there exists δ > 0 such that

x ∈ [0, δ) =⇒
∣∣g(x)− g(0)

∣∣ < ε .

Because g is continuous over the closed, bounded set [0, 1], the Extreme-Value Theorem
implies g is bounded over [0, 1]. Let M = sup{|g(x)| : x ∈ [0, 1]}, so |g(x)−g(0)| ≤ 2M
for every x ∈ [0, 1]. Then for every n ∈ N∫ 1

0

fn(x)
∣∣g(x)− g(0)

∣∣ dx =

∫ δ

0

fn(x)
∣∣g(x)− g(0)

∣∣ dx+

∫ 1

δ

fn(x)
∣∣g(x)− g(0)

∣∣ dx
≤
∫ δ

0

fn(x) ε dx+

∫ 1

δ

fn(x) 2M dx

≤ ε

∫ δ

0

fn + 2M

∫ 1

δ

fn .

Assertion (b) and the uniform convergence of assertion (a) imply that

lim
n→∞

∫ δ

0

fn = 1 , lim
n→∞

∫ 1

δ

fn = 0 ,

whereby the previous inequality shows that

lim sup
n→∞

∫ 1

0

fn(x)
∣∣g(x)− g(0)

∣∣ dx ≤ ε lim
n→∞

∫ δ

0

fn + 2M lim
n→∞

∫ 1

δ

fn = ε .

But as was argued above, because this holds for every ε > 0, assertion (c) follows. �

Remark. This problem is similar to a problem in Homework 14 and a problem in
Homework 15.


