
Second In-Class Exam Solutions
Math 410, Professor David Levermore

Thursday, 5 November 2015

1. [10] Give a counterexample to each of the following false assertions.
(a) If f : R→ R is increasing and one-to-one then it is also continuous.

Solution. There are many counterexamples. The simplest ones have a single
jump discontinuity somewhere. For example, consider the function f defined by

f(x) =

{
x for x < 0 ,

x+ 1 for x ≥ 0 .

This function is clearly increasing and one-to-one, but has a jump discontinuity
at x = 0 because

lim
x→0−

f(x) = 0 6= 1 = lim
x→0+

f(x) .

�

(b) If f : R→ R is differentiable then its derivative f ′ : R→ R is continuous.

Solution. There are many counterexamples. The one we discussed in class was

f(x) =

x2 cos

(
1

x

)
for x 6= 0 ,

0 for x = 0 .

This function is clearly continuously differentiable at every x 6= 0 with

f ′(x) = 2x cos

(
1

x

)
+ sin

(
1

x

)
for x 6= 0 .

Moreover, it is differentiable at x = 0 with

f ′(0) = lim
x→0

f(x)− f(0)

x− 0
= lim

x→0

f(x)

x
= lim

x→0
x cos

(
1

x

)
= 0 .

Hence, f is differentiable over R. However, because

lim
x→0

2x cos

(
1

x

)
= 0 ,

while

lim
x→0

sin

(
1

x

)
does not exist ,

it follows from the formula for f ′(x) given earlier that

lim
x→0

f ′(x) does not exist .

Therefore f ′ is not continuous at x = 0. �
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2. [10] Let f : (a, b) → R be differentiable at a point c ∈ (a, b) with f ′(c) > 0. Prove
that there exists a δ > 0 such that

x ∈ (c− δ, c) ⊂ (a, b) =⇒ f(x) < f(c) ,

x ∈ (c, c+ δ) ⊂ (a, b) =⇒ f(c) < f(x) .

Remark. The problem is asking you to prove the Transversality Lemma.

Solution. Because f is differentiable at c we know that

f ′(c) = lim
x→c

f(x)− f(c)

x− c
.

By the ε-δ definition of limit, this means that for every ε > 0 there exists δ > 0 such
that for every x ∈ (a, b) we have

0 < |x− c| < δ =⇒
∣∣∣∣f(x)− f(c)

x− c
− f ′(c)

∣∣∣∣ < ε .

Because f ′(c) > 0 we may take ε = f ′(c) above to conclude that there exists δ > 0
such that for every x ∈ (a, b) we have

0 < |x− c| < δ =⇒
∣∣∣∣f(x)− f(c)

x− c
− f ′(c)

∣∣∣∣ < f ′(c) .

Because c ∈ (a, b) we may assume that δ is small enough so that (c−δ, c+δ) ⊂ (a, b).
Then we have

0 < |x− c| < δ =⇒ 0 <
f(x)− f(c)

x− c
< 2f ′(c) .

This implies that x− c and f(x)− f(c) will have the same sign when 0 < |x− c| < δ.
It follows that

x ∈ (c− δ, c) =⇒ x− c < 0 =⇒ f(x)− f(c) < 0 ,

x ∈ (c, c+ δ) =⇒ x− c > 0 =⇒ f(x)− f(c) > 0 .

Because (c− δ, c) ⊂ (a, b) and (c, c+ δ) ⊂ (a, b), the result follows. �

3. [10] Evaluate the following limit. (You may use theorems from class.)

lim
x→2

x3 − 8

x2 − 4
.

Solution. Because the limit has a 0/0 indeterminant form, by the l’Hospital rule we
obtain

lim
x→2

x3 − 8

x2 − 4
= lim

x→2

3x2

2x
=

3 · 22

2 · 2
=

12

4
= 3 .

�

Second Solution. For every x 6= ±2 we have

x3 − 8

x2 − 4
=
x2 + 2x+ 4

x+ 2
.

Because the right-hand side above is continuous at x = 2, we have

lim
x→2

x3 − 8

x2 − 4
= lim

x→2

x2 + 2x+ 4

x+ 2
=

22 + 2 · 2 + 4

2 + 2
=

12

4
= 3 .
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4. [15] If f(x) = cosh(x) ≡ 1
2
(ex + e−x) for every x ∈ R then for every k ∈ N we have

f (2k)(x) = cosh(x) , f (2k+1)(x) = sinh(x) for every x ∈ R .
Use this fact to show that

cosh(x) =
∞∑
k=0

1

(2k)!
x2k for every x ∈ R .

Remark. There are many convergence tests that can be applied to show that the
above series converges absolutely. For example, the Ratio and Roots Tests can do this.
However, such convergence tests do not show that the series converges to cosh(x),
which is what you are being asked to show!

Solution. Because for every k ∈ N we have

f (2k)(0) = 1 , f (2k+1)(0) = 0 ,

the series is just the formal Taylor series for f centered at 0. The nth partial sum of
this series can be expressed as a Taylor polynomial approximation in two ways:

n∑
k=0

1

(2k)!
x2k = T 2n

0 cosh(x) = T 2n+1
0 cosh(x) .

If we use the last expression then the Lagrange Remainder Theorem states that for
every x ∈ R there exists some p between 0 and x such that

cosh(x) = T 2n+1
0 cosh(x) +

1

(2n+ 2)!
cosh(p)x2n+2 .

Hence, because 1 = cosh(0) < cosh(p) < cosh(x), for every x ∈ R we have the bound∣∣∣∣ cosh(x)−
n∑
k=0

1

(2k)!
x2k
∣∣∣∣ ≤ 1

(2n+ 2)!
cosh(x)|x|2n+2 .

Because factorials grow faster than exponentials, for every x ∈ R we have

lim
n→∞

1

(2n+ 2)!
cosh(x)|x|2n+2 = 0 .

Therefore the sequence of partial sums converges to cosh(x). �
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5. [10] Let D ⊂ R. A function f : D → R is said to be Hölder continuous of order
α ∈ (0, 1] if there exists a C > 0 such that f satisfies the Hölder bound

|f(x)− f(y)| ≤ C |x− y|α for every x, y ∈ D .

Prove that every such function is uniformly continuous over D.

Solution. By the ε-δ characterization of uniform continuity (the definition in the
notes), we want to show that for every ε > 0 there exists δ > 0 such that for every
x, y ∈ D we have

|y − x| < δ =⇒ |f(y)− f(x)| < ε .

Proof. Let f : D → R satisfy the Hölder bound for some α ∈ (0, 1] and C > 0. Let

ε > 0. Pick δ = (ε/C)
1
α . Then for every x, y ∈ D we have

|x− y| < δ =⇒ |f(x)− f(y)| ≤ C |x− y|α < C δα = ε .

Therefore f is uniformly continuous over D. �

Second Solution. By the sequence characterization of uniform continuity (the
definition in the book), we want to show that for all sequences {xn}n∈N, {yn}n∈N ⊂ D
we have

lim
n→∞

|yn − xn| = 0 =⇒ lim
n→∞

∣∣f(yn)− f(xn)
∣∣ = 0 .

Proof. Let f : D → R satisfy the Hölder bound for some α ∈ (0, 1] and C > 0. Let
{xn}n∈N and {yn}n∈N be sequences in D such that

lim
n→∞

|yn − xn| = 0 .

By the continuity of the power function we have

lim
n→∞

|yn − xn|α =
(

lim
n→∞

|yn − xn|
)α

= 0 .

Then the Hölder bound implies that

lim sup
n→∞

∣∣f(yn)− f(xn)
∣∣ ≤ lim sup

n→∞
C|yn − xn|α = C lim

n→∞
|yn − xn|α = 0 .

But this implies that

lim
n→∞

∣∣f(yn)− f(xn)
∣∣ = 0 .

Therefore f is uniformly continuous over D. �
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6. [15] Prove that for every x ∈ R we have

1 + 4
3
x ≤ (1 + x)

4
3 .

Solution. One approach to this problem uses the Monotonicity Theorem. Define
g(x) = (1 + x)

4
3 − 1− 4

3
x for every x ∈ R. Then g is continuously differentiable with

g′(x) = 4
3

[
(1 + x)

1
3 − 1

]
.

Clearly, g′(x) < 0 for x < 0 while g′(x) > 0 for x > 0. By the Monotonicity
Theorem, g is decreasing over (−∞, 0] and g is increasing over [0,∞). Therefore the
global minimum of g over R is g(0) = 0. Hence, for every x ∈ R we have

(1 + x)
4
3 − 1− 4

3
x = g(x) ≥ g(0) = 0 .

The result follows. �

Second Solution. Another approach to this problem uses convexity ideas. Define
f(x) = (1 + x)

4
3 for every x ∈ R. Then f is continuously differentiable over R with

f ′(x) = 4
3
(1 + x)

1
3 ,

and f is twice differentiable over R− {−1} with

f ′′(x) = 4
9
(1 + x)−

2
3 > 0 .

The Monotonicity Theorem applied to f ′ shows that f ′ is increasing over R. The
Convexity Characterization Theorem then implies that f is strictly convex over R.
This convexity implies that

f(x)− f(0)− f ′(0)x ≥ 0 for every x ∈ R .

Therefore (1 + x)
4
3 − 1− 4

3
x ≥ 0 for every x ∈ R. The result follows. �

Third Solution. Yet another approach uses the Lagrange Remainder Theorem.
Define f(x) = (1 + x)

4
3 for every x ∈ R. Then f is twice differentiable over x > −1

with
f ′(x) = 4

3
(1 + x)

1
3 , f ′′(x) = 4

9
(1 + x)−

2
3 .

By the Lagrange Remainder Theorem for every x > −1 there exists a p between 0
and x such that

f(x)− f(0)− f ′(0)x = 1
2
f ′′(p)x2 .

Hence, for every x > −1 we have

(1 + x)
4
3 − 1− 4

3
x = 4

9
(1 + p)−

2
3x2 ≥ 0 .

This gives the result for every x > −1. We can obtain the result for every x ≤ −1
by observing that in that case (1 + x)

4
3 ≥ 0 and (1 + x) ≤ 0, whereby

(1 + x)
4
3 − 1− 4

3
x = (1 + x)

4
3 + 1

3
− 4

3
(1 + x) ≥ 1

3
> 0 .

Therefore the result follows for every x ∈ R. �



6

7. [10] Let D ⊂ R and f : D → R. Let c be a limit point of D. Write negations of the
following assertions.
(a) “For every sequence {xk}k∈N ⊂ D − {c} we have

lim
k→∞
|xk − c| = 0 =⇒ lim

k→∞
f(xk) =∞ .”

Solution. There exists a sequence {xk}k∈N ⊂ D − {c} such that

lim
k→∞
|xk − c| = 0 and lim inf

k→∞
f(xk) <∞ .

�
Remark. The negation of “limk→∞ f(xk) = ∞” is “lim infk→∞ f(xk) < ∞,”
not “limk→∞ f(xk) <∞.”

(b) “For every M ∈ R there exists a δ > 0 such that for every x ∈ D we have

0 < |x− c| < δ =⇒ f(x) > M .”

Solution. There exists M ∈ R such that for every δ > 0 there exists x ∈ D
such that

0 < |x− c| < δ and f(x) ≤M .

�
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8. [10] Show that the function f(x) = x2 is not uniformly continuous over R.

Solution. We can show the function f(x) = x2 is not uniformly continuous over R
by showing that it satisfies the negation of the sequence characterization of uniform
continuity. This means we must find sequences {xn}n∈N and {yn}n∈N in R such that

lim
n→∞

|yn − xn| = 0 and lim sup
n→∞

∣∣f(yn)− f(xn)
∣∣ > 0 .

Proof. Let {zn}n∈N be any sequence of positive numbers such that

lim
n→∞

zn = 0 .

For every n ∈ N define

xn =
1

zn
, yn =

1

zn
+ zn .

Then the sequences {xn}n∈N and {yn}n∈N satisfy

lim
n→∞

|yn − xn| = lim
n→∞

zn = 0 ,

and

lim sup
n→∞

∣∣f(yn)− f(xn)
∣∣ = lim sup

n→∞

((
1

zn
+ zn

)2

−
(

1

zn

)2
)

= lim sup
n→∞

(
1

z 2
n

+ 2 + z 2
n −

1

z 2
n

)
= lim sup

n→∞

(
2 + z 2

n

)
= 2 > 0 .

Therefore the function f(x) = x2 is not uniformly continuous over R. �

Second Solution. We can show the function f(x) = x2 is not uniformly continuous
over R by showing that it satisfies the negation of the ε-δ characterization of uniform
continuity. This means we must find an εo > 0 such that for every δ > 0 there exists
xδ, yδ ∈ D such that

|yδ − xδ| < δ and
∣∣f(yδ)− f(xδ)

∣∣ > εo .

Any εo > 0 can work. We will use εo = 1.

Proof. Let δ > 0. Pick xδ and yδ by

xδ =
1

δ
, yδ =

1

δ
+
δ

2
.

Then |yδ − xδ| = 1
2
δ < δ and∣∣f(yδ)− f(xδ)
∣∣ =

(
1

δ
+
δ

2

)2

−
(

1

δ

)2

=
1

δ2
+ 1 +

δ2

4
− 1

δ2
= 1 +

δ2

4
> 1 .

Therefore the function f(x) = x2 is not uniformly continuous over R. �
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9. [10] Let f : R → R be differentiable. Suppose the equation f ′(x) = 0 has at most
one real solution. Prove that the equation f(x) = 0 has at most two real solutions.

Solution. Suppose that the equation f ′(x) = 0 has at most one real solution while
the equation f(x) = 0 has (at least) three real solutions {x0, x1, x2}. Without loss of
generality we can assume that

−∞ < x0 < x1 < x2 <∞ .

Then for each i = 1, 2 we know that

• f : [xi−1, xi]→ R is differentiable (and hence is continuous),

• f(xi−1) = f(xi) = 0.

Rolle’s Theorem then implies that for each i = 1, 2 there exists a point pi ∈ (xi−1, xi)
such that f ′(pi) = 0. Because the intervals (x0, x1) and (x1, x2) are disjoint, the
points p1 and p2 are distinct. The equation f ′(x) = 0 therefore has at least two real
solutions, which contradicts our starting supposition. �

Second Solution. There are two cases to consider: either f ′(x) = 0 has no real
solutions or it has exactly one real solution.

If f ′(x) = 0 has no real solutions over R then by the Sign Dichotomy Theorem f ′

must be either negative or positive over R. The Monotonicity Theorem then implies
that f must be strictly monotonic (and hence one-to-one) over R. The equation
f(x) = 0 can thereby have at most one real solution.

If f ′(x) = 0 has exactly one real solution c then by the Sign Dichotomy Theorem
f ′ must be either negative or positive over each of the disjoint intervals

(−∞, c) , (c,∞) .

The Monotonicity Theorem then implies that f must be strictly monotonic (and
hence one-to-one) over each of the two intervals

(−∞, c] , [c,∞) .

Therefore the equation f(x) = 0 can thereby have at most one solution in each of
these intervals. Because the union of these intervals is R, the equation f(x) = 0 can
have at most two real solutions. �

Remark. The second solution rests upon the Sign Dichotomy Theorem and the
Monotonicity Theorem. This is heavier machinery than was used in the first solution,
which rests only upon Rolle’s Theorem. Indeed, the Monotonicity Theorem rests
upon the Mean-Value Theorem, the proof of which rests upon Rolle’s Theorem.

Exercise. Modify the above proofs to prove the following fact. Let f : R → R be
differentiable. Let n ∈ Z+. Suppose that the equation f ′(x) = 0 has at most n real
solutions. Show that the equation f(x) = 0 has at most n+ 1 real solutions.


