
Second In-Class Exam Solutions: Math 410

Section 0401, Professor Levermore

Thursday, 5 November 2009

1. [10] Give a counterexample to each of the following assertions.

(a) If f : R → R is monotonic and one-to-one then it is also continuous.

Solution. There are many counterexamples. The simplest ones have a single jump
discontinuity somewhere. For example, consider the function f defined by

f(x) =

{

x for x < 0 ,

x + 1 for x ≥ 0 .

This function is clearly increasing and one-to-one, but has a jump discontinuity at
x = 0 because

lim
x→0−

f(x) = 0 6= 1 = lim
x→0+

f(x) .

�

(b) If f : R → R is differentiable then its derivative f ′ : R → R is continuous.

Solution. There are many counterexamples. The one we discussed in class was

f(x) =







x2 cos

(

1

x

)

for x 6= 0 ,

0 for x = 0 .

This function is clearly differentiable at every x 6= 0 with

f ′(x) = 2x cos

(

1

x

)

+ sin

(

1

x

)

for x 6= 0 .

Moreover, it is differentiable at x = 0 with

f ′(0) = lim
x→0

f(x) − f(0)

x − 0
= lim

x→0

f(x)

x

= lim
x→0

x cos

(

1

x

)

= 0 .

Hence, f is differentiable over R. However, because

lim
x→0

sin

(

1

x

)

does not exist ,

while

lim
x→0

2x cos

(

1

x

)

= 0 ,

it follows that

lim
x→0

f ′(x) does not exist .

Therefore f ′ is not continuous at x = 0. �
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2. [10] Let f : R → R be differentiable. Prove it is continuous.

Solution. This statement is true. Let c ∈ R be arbitrary. Because f is differentiable
at c we know that

lim
x→c

f(x) − f(c)

x − c
= f ′(c) .

Because for every x ∈ R such that x 6= c one has

f(x) = f(c) +
f(x) − f(c)

x − c
(x − c) ,

it follows from the algebraic properties of limits that

lim
x→c

f(x) = lim
x→c

f(c) + lim
x→c

f(x) − f(c)

x − c
· lim

x→c

(x − c)

= f(c) + f ′(c) · 0 = f(c) .

Hence, f is continuous at c. Because c ∈ R was arbitrary, f is continuous over R. �

Remark. The facts

lim
x→c

f(c) = f(c) , and lim
x→c

(x − c) = 0 ,

were used above without fanfare. You do not have to give proofs of such elementary
facts unless you are explicitly asked to do so.

3. [15] Show that

cos(x) =
∞

∑

k=0

(−1)k

(2k)!
x2k for every x ∈ R .

Remark. It is not enough to simply show that the series converges by some convergence
test. For example, the ratio test shows the series converges for every x ∈ R, but does
not show that it converges to cos(x).

Solution. Let f(x) = cos(x) for every x ∈ R. Then for every k ∈ N one has

f (2k)(x) = (−1)k cos(x) , f (2k+1)(x) = (−1)k+1 sin(x) .

Because
f (2k)(0) = (−1)k , f (2k+1)(0) = 0 ,

the series is just the formal Taylor series for f centered at 0. Moreover, we see that the
nth partial sum can be expressed as a Taylor polynomial approximation in two ways:

n
∑

k=0

(−1)k

(2k)!
x2k = T

(2n)
0 cos(x) = T

(2n+1)
0 cos(x) .

Using the last expression, the Lagrange Remainder Theorem states that for every x ∈ R

cos(x) = T
(2n+1)
0 cos(x) +

(−1)n+1

(2n + 2)!
cos(p)x2n+2 ,

for some p between 0 and x. Hence, for every x ∈ R

∣

∣

∣

∣

cos(x) −
n

∑

k=0

(−1)k

(2k)!
x2k

∣

∣

∣

∣

≤
1

(2n + 2)!
|x|2n+2 .
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Because for every x ∈ R

lim
n→∞

1

(2n + 2)!
|x|2n+2 = 0 ,

the sequence of partial sums therefore converges to cos(x). �

4. [10] Prove that for every x > −1 one has

(1 + x)
3

4 ≤ 1 + 3
4
x .

Solution. One approach to this problem is to use the Lagrange Remainder Theorem.
Define f(x) = (1 + x)

3

4 for every x > −1. Then

f ′(x) = 3
4
(1 + x)−

1

4 , f ′′(x) = − 3
16

(1 + x)−
5

4 .

For every x > −1 the Lagrange Remainder Theorem implies there exists a p between 0
and x such that

f(x) = f(0) + f ′(0)x + 1
2
f ′′(p)x2 .

Hence, becasue (1 + p)−
5

4 > 0 we obtain

(1 + x)
3

4 = 1 + 3
4
x − 3

32
(1 + p)−

5

4 x2 ≤ 1 + 3
4
x ,

which is the desired result. �

Alternative Solution. Another approach to this problem is to use the Monotonicity
Theorem. Define g(x) = (1 + x)

3

4 − 1 − 3
4
x for every x > −1. Then

g′(x) = 3
4

[

(1 + x)−
1

4 − 1
]

.

Clearly, g′(x) > 0 for x ∈ (−1, 0) while g′(x) < 0 for x ∈ (0,∞). By the Monotonicity
Theorem, g is increasing over x ∈ (−1, 0] and g is decreasing over [0,∞). Therefore
x = 0 is a global maximizer of g over (−1,∞), and g(0) = 0 is the maximum of g over
(−1,∞). Hence, for every x > −1 we have

(1 + x)
3

4 − 1 − 3
4
x = g(x) ≤ g(0) = 0 ,

which is the desired result. �

Another Alternative Solution. You can also approach this problem by using the
fact that the function h(t) = t

1

4 is increasing over t > 0. The result will then follow
once you show that

(1 + x)3 ≤ (1 + 3
4
x)4 .

The binomial expansion yields

(1 + 3
4
x)4 − (1 + x)3 = 1 + 43

4
x + 632

42 x
2 + 433

43 x
3 + 34

44 x
4

− 1 − 3x − 3x2 − x3

= 3
8
x2 + 11

16
x3 + 81

256
x4 = 1

256
x2

(

96 + 176x + 81x2
)

.

There are several ways to show that 96 + 176x + 81x2 > 0. For example, you can show
that 96+176x+81x2 has no real roots because its descriminant is 96 ·81−882 = 32 > 0.
You can also use techniques from calculus.
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5. [10] Evaluate the following limit. Give your reasoning. (You may use theorems we have
proved in class.)

lim
x→2

x3 − 8

x2 − 4
.

Solution. For every x 6= 2 one has

x3 − 8

x2 − 4
=

x2 + 2x + 4

x + 2
.

Because the right-hand side above is continuous over (−2,∞), one has

lim
x→2

x3 − 8

x2 − 4
= lim

x→2

x2 + 2x + 4

x + 2
=

4 + 4 + 4

2 + 2
= 3 .

�

Alternative Solution. Because the limit has a 0/0 indeterminant form, by the
l’Hopital rule we obtain

lim
x→2

x3 − 8

x2 − 4
= lim

x→2

3x2

2x
=

3 · 4

2 · 2
= 3 .

6. [15] Use the ǫ-δ criterion to prove that

lim
x→2

x3 − 1

x − 1
= 7 .

Solution. You must show that for every ǫ > 0 and x 6= 1 there exists δ > 0 such that

0 < |x − 2| < δ =⇒

∣

∣

∣

∣

x3 − 1

x − 1
− 7

∣

∣

∣

∣

< ǫ .

You should use the fact that for every x 6= 1 one has

x3 − 1

x − 1
= x2 + x + 1 .

Let ǫ > 0. You can, for example, pick δ = ǫ/(5 + 1
5
ǫ). Then for every x 6= 1

0 < |x − 2| < δ =⇒

∣

∣

∣

∣

x3 − 1

x − 1
− 7

∣

∣

∣

∣

=
∣

∣x2 + x − 6
∣

∣ = |x − 2||x + 3|

≤ |x − 2|
(

5 + |x − 2|
)

< δ(5 + δ) =
ǫ

5 + 1
5
ǫ

(

5 +
ǫ

5 + 1
5
ǫ

)

< ǫ ,

which is what had to be shown. �

Remark. There are many other choices of δ that could be made. For example, you
could pick

δ = min
{

1 , 1
6
ǫ
}

, or δ =
ǫ

5
2

+
√

25
4

+ ǫ
.
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7. [10] Let f : R → R be differentiable. Let n ∈ N. Suppose the following equation has at
most n solutions:

f ′(x) = 0 , x ∈ R .

Show the following equation has at most n + 1 solutions:

f(x) = 0 , x ∈ R .

Solution. Suppose that the equation f ′(x) = 0 has at most n solutions while the
equation f(x) = 0 has n + 2 solutions {xi}

n+1
i=0 . Without loss of generality we can

assume these points are labeled so that

−∞ < x0 < x1 < · · · < xn < xn+1 < ∞ .

Then for each i = 1, · · · , n + 1 one knows that
• f : [xi−1, xi] → R is differentiable (and hence continuous),
• f(xi−1) = f(xi) = 0.

Rolle’s Theorem then implies that for each i = 1, · · · , n + 1 there exists a point pi ∈
(xi−1, xi) such that f ′(pi) = 0. Because the n + 1 intervals (xi−1, xi) are disjoint, the
points pi are distinct. The equation f ′(x) = 0 therefore has at least n + 1 solutions,
which contradicts our starting supposition. �

Alternative Solution. Suppose f ′(x) = 0 has exactly m solutions {ci}
m

i=1, where
m ≤ n. Without loss of generality we can assume these m critical points are labeled so
that

−∞ < c1 < c2 < · · · < cm−1 < cm < ∞ .

By the Dichotomy Theorem f ′ must be either negative or positive over each of the m+1
disjoint intervals

(−∞, c1) , (c1, c2) , · · · (cm−1, cm) , (cm,∞) .

By the Monotonicity Theorem f must be monotonic (and hence one-to-one) over each
of the m + 1 intervals

(−∞, c1] , [c1, c2] , · · · [cm−1, cm] , [cm,∞) .

The equation f(x) = 0 can therefore have at most one solution in each of these m + 1
intervals. Because the union of these intervals is R, the equation f(x) = 0 can have at
most m + 1 solutions. The result follows because m + 1 ≤ n + 1. �

Remark. The alternative solution rests on the Dichotomy Theorem and the Mono-
tonicity Theorem. This machinery is much heavier than that used in the first solution,
which rests only on Rolle’s Theorem. Indeed, the proof of the Monotonicity Theorem
rests on the Mean-Value Theorem, the proof of which rests on Rolle’s Theorem.
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8. [10] Let D ⊂ R and f : D → R be uniformly continuous over D. Let {xk}k∈N be a
Cauchy sequence contained in D. Show that {f(xk)}k∈N is a Cauchy sequence.

Solution. Let ǫ > 0. Because f : (a, b) → R is uniformly continuous over (a, b), there
exists a δ > 0 such that for every x, y ∈ D one has

|x − y| < δ =⇒
∣

∣f(x) − f(y)
∣

∣ < ǫ .

Because {xk}k∈N is a Cauchy sequence, there exists an N ∈ N such that for every
k, l ∈ N one has

k, l > N =⇒ |xk − xl| < δ .

Hence, for every k, l ∈ N one has

k, l > N =⇒ |xk − xl| < δ

=⇒
∣

∣f(xk) − f(xl)
∣

∣ < ǫ .

Therefore {f(xk)}k∈N is a Cauchy sequence. �

9. [10] Let D ⊂ R and f : D → R. Let c be a limit point of D. Write negations of the
following assertions.
(a) “For every sequence {xk}k∈N ⊂ D − {c} one has

lim
k→∞

|xk − c| = 0 =⇒ lim
k→∞

f(xk) = −∞ .”

Solution. There exists a sequence {xk}k∈N ⊂ D − {c} such that

lim
k→∞

|xk − c| = 0 and lim sup
k→∞

f(xk) > −∞ .

(b) “For every M ∈ R there exists a δ > 0 such that for every x ∈ D one has

0 < |x − c| < δ =⇒ f(x) < M .”

Solution: There exists M ∈ R such that for every δ > 0 there exists x ∈ D such
that

0 < |x − c| < δ and f(x) ≥ M .


