Second In-Class Exam Solutions
Math 410, Professor David Levermore
Thursday, 2 November 2017

1. [10] Give (with reasoning) a counterexample to each of the following false assertions.
(a) If f:R — R is differentiable and increasing over R then f’ > 0 over R.
(b) If f: R — R is differentiable then its derivative f': R — R is continuous.

Solution (a). There are many counterexamples. One that was presented in class is

flz) =2".
This function is clearly continuously differentiable over R with f'(x) = 322 We see
that f’(0) = 0 and that f'(x) > 0 for every z # 0.

Because f'(x) > 0 over (—o00,0) and over (0,00), the Monotonicity Theorem says
that f is increasing over (—oo, 0] and over [0, 00). Because f is increasing over (—oo, 0]
and over [0,00), it is increasing over R.

Therefore f : R — R is differentiable and increasing over R but it is false that
f' > 0 because f’'(0) = 0. O

Solution (b). There are many counterexamples. One that was presented in class is

1

a:%os(—) for x £ 0,
x

0 forz=0.

fz) =

This function is clearly continuously differentiable at every = # 0 with
1 1
f'(x) = 2z cos (—> + sin (—) for x #£0.
x x

Moreover, it is differentiable at x = 0 with

1(0) = lim M = lim M = limxcos(l) =0.

x—0 €T — 0 z—0 X z—0 s

Hence, f is differentiable over R. However, because
) 1
lim 2z cos (—) =0,
z—0 T

while

(1 .
limsin| — does not exist ,
z—0 €T

it follows from the formula for f’(x) given earlier that

1
lim f'(z) = lim sin(—) does not exist .

z—0 z—0 €T

Therefore f’ is not continuous at x = 0. O
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2. [10] Let f : (a,b) — R be differentiable at a point ¢ € (a,b) with f’(c) < 0. Show
that there exists a 9 > 0 such that
e (c—0,0)C(ab) = f(x)> f(c),
x € (c,c+9) C(a,b) = f(c)> f(x),
Remark. The problem is asking you to prove the Transversality Lemma.

Solution. Because f is differentiable at ¢ we know that

z—c T —cC
By the e-d definition of limit, this means that for every ¢ > 0 there exists § > 0 such
that for every x € (a,b) we have

O<|lzr—c/<d = W—f'(c)<e.
Because f’(c) < 0 we may take ¢ = — f’(c) above to conclude that there exists 6 > 0
such that for every = € (a,b) we have
O<|z—c|<d = ‘W—f’(c) < —f(e).

Because ¢ € (a,b) we may assume that J is small enough so that (¢ —d,c+6) C (a,b).
Then we have

f(x) = f(c)

r—=cC

O<|r—cl<d = 2f'(c)< <0.

This implies that © —c and f(z) — f(c) will have opposite signs when 0 < |z —¢| < 4.
It follows that

r€(c—d,c) = z—-c<0 = f(x)—f(c)>0,
re(ce+d) = zxz—c>0 = f(z)—f(c)<O.
Because (¢ —6,¢) C (a,b) and (¢, ¢+ §) C (a,b), the result follows. O
3. [10] Evaluate the following limit. (You may use theorems from class.)

Y xt — 81
a:g%$3—27'

Solution. The limit has a 0/0 indeterminant form. By the I’'Hospital rule we obtain

oot =381 o 4x3 433 4.27
lim =lim — = = — =4,
23 13 — 27 13 312 3.32 27

Second Solution. For every x # 3 we have
2t =81  (z—3)(2® 432>+ 92 +27)  2°+4 327492 +27
3 —27 (x —3)(22+ 32+ 9) o 2243x+9
Because the right-hand side above is continuous at x = 3, we have
oat =81 a2t 4+32%4+9r+27  3¥43-3249-3+427  4.27
lim = lim = =
=323 =27 223  2243x+9 F+3-3+9 27

=14.




4. [15] If f(x) = sin(x) for every x € R then for every k € N we have
@ (z) = (—=1)*sin(x), fEH () = (=1)%cos(x)  for every z € R.
Use this fact to show that

0o 1 k
sin(z) = Z ﬁ ¥t for every v € R.
k=0

Remark. There are many convergence tests that can be applied to show that the
above series converges absolutely. For example, if we apply the Ratio Test then
because for every x € R we have

1 | o[ 243
. (2k + 3)! L |z|? _
lim i = lim =0,
k—o00 ‘$’2k+1 k—oo (2k + 2)(2k + 3)
(2k + 1)!

we conclude for every x € R that

= (D

2kt 1) converges absolutely .

k=0

However, such convergence tests do not show that the series converges to sin(x),
which is what you are being asked to show!

Solution. Because for every £ € N we have
Fe(0) =0, FED0) = (1),

the series is just the formal Taylor series for f centered at 0. The n'" partial sum of
this series can be expressed as a Taylor polynomial approximation in two ways:

n _1 k
Z ﬁ 2 T02n+1 sin(z) = TOQ”+2 sin(x) .
k=0 ’

If we use the last expression then the Lagrange Remainder Theorem states that for
every x € R there exists some p between 0 and = such that

_1 n+1
sin(z) = 73" sin(z) + ((271—_)’_3)' cos(p)z?" 3.
Hence, because | cos(p)| < 1 for every x € R, we have the bound
: ~ (D" s 1 2n+3
_ - - < - n+3
sin(z) £ (2k + 1)) S Gnrayn @

Because factorials grow faster than exponentials, for every x € R we have

1
lim ———— |2[*""* = 0.
ey

Therefore the sequence of partial sums converges to sin(x). O



5. [10] Let D C R and f : D — R be uniformly continuous over D. Let {z}}ren be a
Cauchy sequence contained in D. Show that {f(xx)}ren is a convergent sequence.

Solution. Because every Cauchy sequence is convergent, it is enough to show that
{f(zk) }ren is a Cauchy sequence. This means we have to show that for every € > 0
there exists an n. € N such that

m,n>ne = |f(zm) — fla,)] <e.

Proof. Let € > 0. Because f: D — R is uniformly continuous over D, there exists
0. > 0 such that for every x,y € D we have

[z -yl <dc = [f(x) = fW)l <e.
Because {z} }ren is a Cauchy sequence, there exists an n. € N such that
m,n>n. = |x,—x,] <.
Because {zy }ren is contained in D it follows that
[Tm — | <be = [f(@m) = f(zn)] <e.
By combining the last two implications we see that
m,n>ne = |f(zm) — fla,)] <e.

Therefore the sequence {f(xx)}ren is Cauchy and thereby is convergent. O

6. [10] Let D C R and f: D — R. Let ¢ be a limit point of D. Write negations of the
following assertions.
(a) “For every sequence {xy}ren C D — {c} we have

lim |z — /=0 = lim f(z}) = —00."
k—o0 k—o0

(b) “For every M € R there exists a § > 0 such that for every x € D we have

O<|z—c<d = flz)>M"

Solution (a). There exists a sequence {xy}rey C D — {c} such that

lim |z —¢/=0 and limsup f(zg) > —00.
k—oo k—o0

0

Y

Remark. The negation of “limy_,o f(2) = —00” is “limsup,_,, f(xx) > —00,” not

“limy oo f(g) > —00.”

Solution (b). There exists M € R such that for every § > 0 there exists x € D
such that

O<|r—c¢|<éd and f(z)< M.



7. [15] Prove that for every nonzero x € R we have

8
7

1+ 3z < (142)7

Solution. One approach to this problem uses the Monotonicity Theorem. Define
g(z) = (1+z)7 —1— Sz for every x € R. Then g is continuously differentiable with

1
g(z) =3[ +2)7 —1].
Clearly, ¢'(x) < 0 for x < 0 while ¢’(x) > 0 for z > 0. By the Monotonicity

Theorem, ¢ is decreasing over (—oo, 0] and g is increasing over [0, c0). Therefore the
global minimum of g over R is g(0) = 0. Hence, for every x € R we have

(14 2)7 — 1—3z=g(z) > g(0)=0.
The result follows. 0

Second Solution. Another approach to this problem uses convexity ideas. Define
f(z) = (1+ )7 for every x € R. Then f is continuously differentiable over R with

f(z) =31 +2)7,
and f is twice differentiable over R — {—1} with

fx) =51 +2)"7 >0,

The Monotonicity Theorem applied to f’ shows that f’ is increasing over (—oo, —1]
and over [—1,00), whereby it is increasing over R. The Convexity Characterization
Theorem then implies that f is strictly conver over R. This convexity implies that

f(x)— f(0) = f'(0)x >0  for every z € R.
Therefore (14 z)7 — 1 — 82 > 0 for every « € R. The result follows. O
Third Solution. Yet another approach uses the Lagrange Remainder Theorem.
Define f(z) = (1 + 2)7 for every « € R. Then f is twice differentiable over z > —1
with
1 6
fl)=30+z)7,  f2) =51 +2)77.

By the Lagrange Remainder Theorem for every x > —1 there exists a p between 0
and x such that

f(a) = f0) + f(0)z + 3 f"(p)a’.
Hence, for every x > —1 we have
(1+:c)% —1-%2=4(1 er)*%:c2 > 0.

This gives the result for every x > —1. We can obtain the result for every x < —1
by observing that in that case (14 )7 > 0 and (1 4 z) < 0, whereby

(1+a2)7 —1-Sc=(0+2)7 +1-51+z)>1>0.
Therefore the result follows for every x € R. 0



8. [10] Show that the function f(z) = 1/z is not uniformly continuous over R;.

Solution. We can show the function f(x) = 1/z is not uniformly continuous over R,
by showing that it satisfies the negation of the sequence characterization of uniform
continuity. This means we must find sequences {2, }neny and {y, fnen in R such that

n—00 n—00

Proof. Let {z,}.en be any sequence of positive numbers such that

lim z, = 0.
n—oo

For every n € N define (here we make different choices than in the notes)

1

Then the sequences {2, }neny and {y, }nen are contained in R, and satisfy

lim |y, — 2,/ = lim z, =0,

n—oo n—oo
and

1 1 n — T,
lim | f(yn) — f(zn)| = lim (— — —) = lim 22"
= Jim = Jim =120,
Zn + 2t 1+ 27

Therefore the function f(z) = 1/ is not uniformly continuous over R, . 0

Second Solution. We can show the function f(z) = 1/ is not uniformly continuous
over R, by showing that it satisfies the negation of the -0 characterization of uniform
continuity. This means we must find an €, > 0 such that for every § > 0 there exists
xs,ys € Ry such that

lys — zs| < and ‘f(yg)—f($5)|260.

Any €, > 0 can work. We will use ¢, = %

Proof. Let 6 > 0. Pick x5 and ys by

) 20
$5=m7 y5:1—+(5
Then 0 < z5 < ys,
20 ) 0
o= ol =5 15 T 10 <%
and
o) — flag)| =~ —— =120 19 120

ZTs Ys 1) 20 20

Therefore the function f(z) = 1/z is not uniformly continuous over R. O
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9. [10] Let f : R — R be differentiable. Suppose the equation f’(z) = 0 has at most
five real solutions. Prove that the equation f(z) = 0 has at most six real solutions.

Solution. Suppose that the equation f(z) = 0 has (at least) seven real solutions
{zo, x1, 9, T3, T4, x5, 26 }. Without loss of generality we can assume that

—00 < Ty <X < Ty < X3 < Ty <5< Tg <O,
Then for each i =1,2,--- ,6 we know that
e f:[r;_1,7;] — R is differentiable (and hence is continuous),

o f(xi1)= f(z:) = 0.
Rolle’s Theorem then implies that for each ¢ = 1,2,--- 6 there exists a point p; €
(i1, z;) such that f'(p;) = 0. Because the intervals {(z;_1,7;)}S_, are disjoint,
the points {p;}¢_, are distinct. Therefore equation f'(x) = 0 has at least six real
solutions, which shows that it has more than five real solutions. 0]

Second Solution. Suppose that f'(x) = 0 has exactly n real solutions for some
n € {0,1,2,3,4,5}.

If n = 0 then f’(z) = 0 has no real solutions over R. By the Sign Dichotomy
Theorem f’ must be either negative or positive over R. The Monotonicity Theorem
then implies that f must be strictly monotonic (and hence one-to-one) over R. The
equation f(x) = 0 can thereby have at most one real solution.

If n > 0 then f'(z) = 0 has exactly n real solutions {ci,--- ,¢,} for some n €
{1,2,3,4,5}. Without loss of generality we can assume that

—00< << <y <00

Then by the Sign Dichotomy Theorem f’ must be either negative or positive over
each of the n + 1 disjoint intervals

(—o0,c1), (c1,¢2),-++, (cp,00).

The Monotonicity Theorem then implies that f must be strictly monotonic (and
hence one-to-one) over each of the n + 1 intervals

(—o0,c1], er,eo],o+ s [en,00).

Therefore the equation f(x) = 0 can thereby have at most one solution in each of
these intervals. Because the union of these intervals is R, the equation f(z) =0 can
have at most n 4 1 real solutions. Because n is at most 5, the equation f(z) = 0 can
have at most 6 real solutions. 0J

Remark. The second solution rests upon the Sign Dichotomy Theorem and the
Monotonicity Theorem. This is heavier machinery than was used in the first solution,
which rests only upon Rolle’s Theorem. Indeed, the Monotonicity Theorem rests
upon the Mean-Value Theorem, the proof of which rests upon Rolle’s Theorem.

Exercise. Modify the above proofs to prove the following fact. Let f : R — R be
differentiable. Let n € Z,. Suppose that the equation f’(z) = 0 has at most n real
solutions. Show that the equation f(x) = 0 has at most n + 1 real solutions.



