First In-Class Exam Math 410, Professor David Levermore Thursday, 28 September 2017

- 1. [10] Let $a \in \mathbb{R}$ have the property that a < 1/k for every $k \in \mathbb{Z}_+$. Prove $a \leq 0$.
- 2. [10] Prove that for every nonzero $x \in \mathbb{R}$ we have the inequality

$$1 + \frac{4}{3}x < (1+x)^{\frac{4}{3}}$$

- 3. [15] Give a counterexample to each of the following false assertions.
 - (a) If a sequence $\{a_k\}_{k\in\mathbb{N}}$ in \mathbb{R} diverges then the subsequence $\{a_{2k}\}_{k\in\mathbb{N}}$ diverges.
 - (b) A countable intersection of nested nonempty open intervals is also nonempty.

(c) If
$$\lim_{k\to\infty} a_k = 0$$
 then $\sum_{k=0} a_k$ converges.

4. [10] Consider the real sequence $\{b_k\}_{k\in\mathbb{N}}$ given by

$$b_k = (-1)^k \frac{2k+4}{k+1}$$
 for every $k \in \mathbb{N} = \{0, 1, 2, \dots\}$.

- (a) [3] Write down the first three terms of the subsequence $\{b_{2k}\}_{k\in\mathbb{N}}$.
- (b) [3] Write down the first three terms of the subsequence $\{b_{2^k}\}_{k\in\mathbb{N}}$.
- (c) [4] Write down $\liminf_{k\to\infty} b_k$ and $\limsup_{k\to\infty} b_k$. (No proof is needed here.)
- 5. [15] Let $\{a_k\}_{k\in\mathbb{N}}$ and $\{b_k\}_{k\in\mathbb{N}}$ be bounded, positive sequences in \mathbb{R} . (a) [10] Prove that

$$\limsup_{k \to \infty} (a_k b_k) \le \left(\limsup_{k \to \infty} a_k\right) \left(\limsup_{k \to \infty} b_k\right).$$

- (b) [5] Give an example for which equality does not hold above.
- 6. [10] Let $\{a_k\}_{k\in\mathbb{N}} \subset \mathbb{R}$ be a sequence and $\{a_{n_k}\}_{k\in\mathbb{N}}$ be a subsequence of it. Show that $\sum_{k=0}^{\infty} a_k$ converges absolutely $\implies \sum_{k=0}^{\infty} a_{n_k}$ converges absolutely.
- 7. [10] Let $A \subset \mathbb{R}$ be bounded above. Let A^c denote the closure A. Prove $\sup\{A\} \in A^c$.
- 8. [10] Determine all $a \in \mathbb{R}$ for which

$$\sum_{k=0}^{\infty} \left(\frac{k^2+1}{k^4+1}\right)^a \quad \text{converges}\,.$$

Give your reasoning.

- 9. [10] Let $\{b_k\}_{k\in\mathbb{N}}$ be a sequence in \mathbb{R} and let A be a subset of \mathbb{R} . Write the negations of the following assertions.
 - (a) "For some $\epsilon > 0$ we have $|b_j 3| \ge \epsilon$ frequently as $j \to \infty$."
 - (b) "Every sequence in A has a subsequence that converges to a limit in A."