First In-Class Exam Solutions
Math 410, Professor David Levermore
Thursday, 28 September 2017

1. [10] Let a € R have the property that a < 1/k for every k € Z,. Prove a < 0.

Solution. This is a proof by contradiction. Suppose the negation of the assertion.
Specifically, suppose that a > 0. Then by the Archimedean Property there exists
an n € Z, such that na > 1, which implies that % < a. But this contradicts the
property that a < 1/k for every k € Z,. Therefore a < 0. U

Alternative Solution. The property that a < 1/k for every k € Z, implies that a
is a lower bound of the set S = {; : k € Z,}. It follows that a < inf{S}, because
inf{S} is the greatest lower bound of the set S. We claim that inf{S} = 0. Indeed,
because 0 < % for every k € Z., we see that 0 is also a lower bound of S. Moreover,
for every b > 0 the Archimedean Property implies there exists an n € Z, such that
nb > 1. This implies that % < b, which means that b is not a lower bound for S.
Therefore inf{S} = 0, which implies that a < 0. O

2. [10] Prove that for every nonzero x € R we have the inequality
4 4
I+32<(1+2)3
Solution. Let z € R be nonzero. Because for every y, z € R we know that y < z if
and only if y% < z%, it is enough to prove the inequality
(14 32)° < (1+a2)*.
By the binomial formula we have
(1+2)" =144z + 62° +42® + 2*,
(14 32)° =1+ 40+ La? 4 8a .
Therefore
(I+z)'—(1+42)°=(6—10)2> + (4 — &)’ + 2
:2x2+44x3+x =z (x —f-;l—?l‘—f-%)
— 22 2 222
=7 [(“f—ﬁ) +3 - (%) }
Because x # 0 we see that x? > 0. Because

B =G ) =0-3 ) =30-3) =5 >0,

we see that the factor in the square brackets above is also positive. We conclude that
for every nonzero x € R we have

(1+32)" <(1+2)",
whereby for every nonzero x € R we have
4 4
1+ 3T < (1 + SC)3

Therefore we have proved the asserted inequality. O
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Alternative Solution. This is a proof by contradiction. Suppose the negation of
the assertion. Specifically, suppose that there exists some nonzero ¢ € R such that

4
1+3c>(1+0¢)s.
Because for every vy, 2 € R we know that z > y implies 2® > y3, it follows that
(1+40°>(1+0)".
By the binomial formula we have
(1+c)* =144c+6c* +4c® + ¢,
(1430 =1+4c+ 82+ 8.
Therefore the inequality satisfied by ¢ becomes

13—602 + %03 > 6¢% + 4 + c4,

which implies that

Because ¢ # 0 we see that ¢ > 0. Because

-3 =1-G 9 =30-3 ) =30-38) =3 & >0,

we see that the factor in the square brackets above is also positive. Therefore we have
shown that 0 is greater than or equal to a positive number, which is a contradiction.
Hence, no such c exists. Therefore the asserted inequality holds. [l

. ive a counterexample to each of the following false assertions.

15| Gi t le t h of the following fal ti

(a) If a sequence {a}ren in R diverges then the subsequence {agy }ren diverges.
(

]
a)
b) A countable intersection of nested nonempty open intervals is also nonempty.
[e.e]
)

(c) If limy oo ax = 0 then Z aj converges.
k=0
Solution (a). A simple counterexample is obtained by setting a, = (—1)* for every

k € N. Then the sequence {ay}ren diverges but the subsequence {a?}ren converges
to 1 because a? = (—1)%* = 1. O

Solution (b). Any countable intersection of nested nonempty open intervals must
have the form

oo

m (aka bk)

k=0
where ay, < b and (ags1,bpr1) C (ag, by) for every k € N. Such an intersection that
is empty is obtained by setting a; = 0 and b, = 27% for every k € N. O

Solution (c). A simple counterexample is obtained by setting ay = ¢ for every
k € Z. because

1

o
lim — =0, while the harmonic series Z

diverges .
k—o0
k=1

| =



4. [10] Consider the real sequence {by}ren given by
2k +4
by = (1)
e= )
(a) [3] Write down the first three terms of the subsequence {ba }en-

a

(b) [3] Write down the first three terms of the subsequence {box }ren.

(c) [4] Write down lilgn inf by and limsup b, . (No proof is needed here.)
—00

k—o0

for every k e N={0,1,2,...}.

Remark. We are given that N = {0,1,2,---}, as was the convention in the notes.

Solution (a). When k& = 0,1,2 we have 2k = 0,2, 4, whereby the first three terms
of the subsequence {byy }ren are

2-0+4
b= (-1’ S =4, b= (-1)

Solution (b). When k£ = 0,1,2 we have 2% = 1,2,4, whereby the first three terms
of the subsequence {byx }ren are

,2-2+4
2+1

42-4+4 12
44+1 5

8
= — g —]_
37 b4 ( )

2-14+14 8 12
by = (—1)* =-3 by = — by = —.
1 ( ) 1 + 1 ) 2 3 ) 4 5
Solution (c) Because boy1 < 0 while by, > 0, and because
) . 22k +1)+4 4k + 6
_ q\2k+1 _ __
A oy = lim (( D ok D) 1 ) koooo 2k + 2 !
while
. . 2(2k)+5 . 4k +5
— — 2k— f—y —
am by, =l (( D on 12 ) T R
we see that
liminf by, = lim bogy = —2, limsup b, = lim bgy = 2.
k—oo k—o0 k—00 k—o00

Remark. Proposition 2.17 can be used to prove the answers to (c).

5. [15] Let {ax}ren and {by}ren be bounded, positive sequences in R.
(a) [10] Prove that

lim sup (aiby) < <lim sup ak) (lim sup bk> )

k—o0 k—o0 k—o0

(b) [5] Give an example for which equality does not hold above.
Remark. This is a variant of the problem from the homework to prove that

lim sup (ay + bx) < limsup ay + limsup by, .

k—oo k—o0 k—o0

The proofs of these two inequalities are very similar.



Solution (a). Let ¢ = agby for every k € N. For every k € N we define
ay =sup{a; : [ >k}, b =sup{b; : | >k}, ¢, =sup{¢ : [ > k}.

Because the sequences {a }ren, {bk }ren, and {cg ren are bounded above and positive,
for every k € N we have

0<a < oo, 0 < by < 00, 0<c <o00.

The real sequences {ay }ren, {brtren, and {G}ren are nonincreasing because their
terms are supremums of successively smaller sets. Moreover, they are bounded below
because {ag}tren, {bk}ren, and {cg}ren are positive. Therefore they converge by
Montonic Sequence Convergence Theorem. By the definition of lim sup we have

limsup a, = lim ay, limsup by, = lim b, limsupc, = lim ¢ .

The crucial observation is that for every k € N we have
o = aby < apby  for every | >k,
which yields the inequality
G =sup{c : 1 >k} <apbg.
This inequality and the properties of limits then imply

limsup aib, = limsup ¢, = lim ¢, < lim agb
k—o0 k—o0

k—o0 k—o00
k—o00 k—o00
= < lim sup ak> ( lim sup bk> .
k—o00 k—o0
This is the inequality that we were asked to prove. 0

Solution (b). Let p > 1. Let {ay}ren be any bounded, positive sequence such that

liminfa, = —, and limsupa, = p.
k—oo P k—o0

For example, we can simply take

p for k even

ap=p " =41
— for k odd.
P

Set by = 1/ay, for every k € N. Then
1 1
limsup b, = limsup — = —— = p,
k—o0 k—oo Ak lim 1nflc—wo Qg

whereby
limsupapby =1 < p2 = (lim sup ak) (hm sup bk> .
k—o00 k—o00 k—o00

So equality does not hold for the bounded, positive sequences {ay}ren and {bg }ren.
[
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6. [10] Let {ax}ren C R be a sequence and {a,, }ren be a subsequence of it. Show that

o oo
Z ap converges absolutely —=— Z an, converges absolutely .
k=0 k=0

Solution. By the definition of absolute convergence of a series

o0 oo
E ap converges absolutely <= E lax| converges,
k=0 k=0
o oo
g an, converges absolutely <= E la,,| converges.
k=0 k=0

By the definition of a convergent series, each of the series on the right-hand side above
is convergent if and only if its associated sequence of partial sums is convergent. These
sequences of partial sums are given by {¢,} and {p,,} respectively where ¢, and p,,
are defined for every n,m € N by

n m
qn:Z|a'k:|a pm:Z|ank|
k=0 k=0

It is clear that these sequences are nondecreasing. The Monotonic Sequence Theorem
then implies that these sequences converge if and only if they are bounded above.
Therefore

o
Z lag| converges <= {¢,} is bounded above,
k=0

Z lan,| converges <= {p,} is bounded above.
k=0
The crucial observation is that p,, and ¢, satisfy the inequality

m Nm
Pm = Z lan, | < Z lag| = qn,, for every m € N.
k=0 k=0

This inequality shows that if {¢,} is bounded above then {p,,} is bounded above.
Therefore

Z ar converges absolutely <= {g¢,} is bounded above
k=0
—>  {pm} is bounded above

oo
— Z an, converges absolutely .
k=0
OJ
Remark. This proof involves three notions of convergence: (1) absolute convergence

of a series, (2) convergence of a series, and (3) convergence of a sequence. Whenever
“converges” appears in your solution it should be clear which notion is being used.



7. [10] Let A C R be bounded above. Let A denote the closure A. Prove sup{A} € A°.

Solution. Because A C R is bounded above, we know A has an upper bound in R.
Therefore sup{ A}, which is the least upper bound of A, is also in R. Let a = sup{A}.
We want to show that a € A°.

For every n € N the set AN (a — 27", 00) is nonempty because otherwise every
point in (a — 27", 00) would be an upper bound of A, which contradicts the fact that
a is the least upper bound of A. Now for every n € N let a, € AN (a — 27", 00).
Then because a is an upper bound for A we have

a—2""<a,<a foreverynéeN.

Therefore

la, —al =a—a, <27 foreveryn € N,
which implies that a,, — a as n — oo. Because {a, }neny C A and a,, — a as n — o0,
we conclude that a € A°. O

8. [10] Determine all a € R for which

i(k%rl)“ .
converges .
kt4+1

k=0

Give your reasoning.

Solution. The series converges for a € (%, o0) and diverges otherwise. Because
P4+1 1
R ~ 12 as k — oo,

we see that the original series should be compared with the p-series

=1
>
k=1

This is best handled by Two-Way Limit Comparison Test. Indeed, for every a € R
we have

(k2+1)a 1 a

74 L1 B4 4 k2\ @ 1+ —

fim ML (RN D [ R —
k2 T

so the Two-Way Limit Comparison Test implies that

i (kQ i 1)a converges <~ i L converges
kt 41 k2 '

k=0 k=1

Because the p = 2a for the p-series, it converges for a € (%, oo) and diverges otherwise.
The same is thereby true for the original series. 0

Remark. The Two-Way Direct Comparison Test can be used, but not as efficiently
because the sign of a matters. A proof might start with the bounds

I _kK+1 2
ESH—HSE foreverykEZ+.
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9. [10] Let {bx}ren be a sequence in R and let A be a subset of R. Write the negations
of the following assertions.
(a) “For some € > 0 we have |b; — 3] > € frequently as j — 00.”
(b) “Every sequence in A has a subsequence that converges to a limit in A.”

Solution (a). “For every e > 0 we have |b; — 3| < € eventually as j — 00.” O

Solution (b). “There is a sequence in A such that every subsequence of it either
diverges or converges to a limit outside A.” 0

Remark. The answer “There is a sequence in A such that no subsequence of it
converges to a limit in A.” does not fully carry the negation through.

Remark. Assertion (a) is equivalent to the sequence {b;} converges to 3. Assertion
(b) is the definition that the set A is sequentially compact.



