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1. [10] Let a ∈ R have the property that a < 1/k for every k ∈ Z+. Prove a ≤ 0.

Solution. This is a proof by contradiction. Suppose the negation of the assertion.
Specifically, suppose that a > 0. Then by the Archimedean Property there exists
an n ∈ Z+ such that na > 1, which implies that 1

n
< a. But this contradicts the

property that a < 1/k for every k ∈ Z+. Therefore a ≤ 0. �

Alternative Solution. The property that a < 1/k for every k ∈ Z+ implies that a
is a lower bound of the set S = { 1

k
: k ∈ Z+}. It follows that a ≤ inf{S}, because

inf{S} is the greatest lower bound of the set S. We claim that inf{S} = 0. Indeed,
because 0 < 1

k
for every k ∈ Z+, we see that 0 is also a lower bound of S. Moreover,

for every b > 0 the Archimedean Property implies there exists an n ∈ Z+ such that
nb > 1. This implies that 1

n
< b, which means that b is not a lower bound for S.

Therefore inf{S} = 0, which implies that a ≤ 0. �

2. [10] Prove that for every nonzero x ∈ R we have the inequality

1 + 4
3
x < (1 + x)

4
3 .

Solution. Let x ∈ R be nonzero. Because for every y, z ∈ R we know that y < z if
and only if y

1
3 < z

1
3 , it is enough to prove the inequality

(1 + 4
3
x)3 < (1 + x)4 .

By the binomial formula we have

(1 + x)4 = 1 + 4x+ 6x2 + 4x3 + x4 ,

(1 + 4
3
x)3 = 1 + 4x+ 16

3
x2 + 64

27
x3 .

Therefore

(1 + x)4 − (1 + 4
3
x)3 =

(
6− 16

3

)
x2 +

(
4− 64

27

)
x3 + x4

= 2
3
x2 + 44

27
x3 + x4 = x2

(
x2 + 44

27
x+ 2

3

)
= x2

[(
x− 22

27

)2
+ 2

3
−
(
22
27

)2]
.

Because x 6= 0 we see that x2 > 0. Because

2
3
−
(
22
27

)2
= 2

3
−
(
2
3
· 11

9

)2
= 2

3

(
1− 2

3
· 121

81

)
= 2

3

(
1− 242

243

)
= 2

3
· 1
243

> 0 ,

we see that the factor in the square brackets above is also positive. We conclude that
for every nonzero x ∈ R we have

(1 + 4
3
x)3 < (1 + x)4 ,

whereby for every nonzero x ∈ R we have

1 + 4
3
x < (1 + x)

4
3 .

Therefore we have proved the asserted inequality. �
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Alternative Solution. This is a proof by contradiction. Suppose the negation of
the assertion. Specifically, suppose that there exists some nonzero c ∈ R such that

1 + 4
3
c ≥ (1 + c)

4
3 .

Because for every y, z ∈ R we know that z ≥ y implies z3 ≥ y3, it follows that

(1 + 4
3
c)3 ≥ (1 + c)4 .

By the binomial formula we have

(1 + c)4 = 1 + 4c+ 6c2 + 4c3 + c4 ,

(1 + 4
3
c)3 = 1 + 4c+ 16

3
c2 + 64

27
c3 .

Therefore the inequality satisfied by c becomes
16
3
c2 + 64

27
c3 ≥ 6c2 + 4c3 + c4 ,

which implies that

0 ≥
(
6− 16

3

)
c2 +

(
4− 64

27

)
c3 + c4

= 2
3
c2 + 44

27
c3 + c4 = c2

(
c2 + 44

27
c+ 2

3

)
= c2

[(
c− 22

27

)2
+ 2

3
−
(
22
27

)2]
.

Because c 6= 0 we see that c2 > 0. Because

2
3
−
(
22
27

)2
= 2

3
−
(
2
3
· 11

9

)2
= 2

3

(
1− 2

3
· 121

81

)
= 2

3

(
1− 242

243

)
= 2

3
· 1
243

> 0 ,

we see that the factor in the square brackets above is also positive. Therefore we have
shown that 0 is greater than or equal to a positive number, which is a contradiction.
Hence, no such c exists. Therefore the asserted inequality holds. �

3. [15] Give a counterexample to each of the following false assertions.
(a) If a sequence {ak}k∈N in R diverges then the subsequence {a2k}k∈N diverges.
(b) A countable intersection of nested nonempty open intervals is also nonempty.

(c) If limk→∞ ak = 0 then
∞∑
k=0

ak converges.

Solution (a). A simple counterexample is obtained by setting ak = (−1)k for every
k ∈ N. Then the sequence {ak}k∈N diverges but the subsequence {a 2

k}k∈N converges
to 1 because a 2

k = (−1)2k = 1. �

Solution (b). Any countable intersection of nested nonempty open intervals must
have the form

∞⋂
k=0

(ak, bk)

where ak < bk and (ak+1, bk+1) ⊂ (ak, bk) for every k ∈ N. Such an intersection that
is empty is obtained by setting ak = 0 and bk = 2−k for every k ∈ N. �

Solution (c). A simple counterexample is obtained by setting ak = 1
k

for every
k ∈ Z+ because

lim
k→∞

1

k
= 0 , while the harmonic series

∞∑
k=1

1

k
diverges .
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4. [10] Consider the real sequence {bk}k∈N given by

bk = (−1)k
2k + 4

k + 1
for every k ∈ N = {0, 1, 2, . . . } .

(a) [3] Write down the first three terms of the subsequence {b2k}k∈N.
(b) [3] Write down the first three terms of the subsequence {b2k}k∈N.
(c) [4] Write down lim inf

k→∞
bk and lim sup

k→∞
bk . (No proof is needed here.)

Remark. We are given that N = {0, 1, 2, · · · }, as was the convention in the notes.

Solution (a). When k = 0, 1, 2 we have 2k = 0, 2, 4, whereby the first three terms
of the subsequence {b2k}k∈N are

b0 = (−1)0
2 · 0 + 4

0 + 1
= 4 , b2 = (−1)2

2 · 2 + 4

2 + 1
=

8

3
, b4 = (−1)4

2 · 4 + 4

4 + 1
=

12

5
.

Solution (b). When k = 0, 1, 2 we have 2k = 1, 2, 4, whereby the first three terms
of the subsequence {b2k}k∈N are

b1 = (−1)1
2 · 1 + 4

1 + 1
= −3 , b2 =

8

3
, b4 =

12

5
.

Solution (c) Because b2k+1 < 0 while b2k > 0, and because

lim
k→∞

b2k+1 = lim
k→∞

(
(−1)2k+12(2k + 1) + 4

(2k + 1) + 1

)
= − lim

k→∞

4k + 6

2k + 2
= −2 ,

while

lim
k→∞

b2k = lim
k→∞

(
(−1)2k

2(2k) + 5

(2k) + 2

)
= lim

k→∞

4k + 5

2k + 2
= 2 ,

we see that

lim inf
k→∞

bk = lim
k→∞

b2k+1 = −2 , lim sup
k→∞

bk = lim
k→∞

b2k = 2 .

�

Remark. Proposition 2.17 can be used to prove the answers to (c).

5. [15] Let {ak}k∈N and {bk}k∈N be bounded, positive sequences in R.
(a) [10] Prove that

lim sup
k→∞

(akbk) ≤
(

lim sup
k→∞

ak

)(
lim sup
k→∞

bk

)
.

(b) [5] Give an example for which equality does not hold above.

Remark. This is a variant of the problem from the homework to prove that

lim sup
k→∞

(ak + bk) ≤ lim sup
k→∞

ak + lim sup
k→∞

bk .

The proofs of these two inequalities are very similar.
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Solution (a). Let ck = akbk for every k ∈ N. For every k ∈ N we define

ak = sup{al : l ≥ k} , bk = sup{bl : l ≥ k} , ck = sup{cl : l ≥ k} .
Because the sequences {ak}k∈N, {bk}k∈N, and {ck}k∈N are bounded above and positive,
for every k ∈ N we have

0 < ak <∞ , 0 < bk <∞ , 0 < ck <∞ .

The real sequences {ak}k∈N, {bk}k∈N, and {ck}k∈N are nonincreasing because their
terms are supremums of successively smaller sets. Moreover, they are bounded below
because {ak}k∈N, {bk}k∈N, and {ck}k∈N are positive. Therefore they converge by
Montonic Sequence Convergence Theorem. By the definition of lim sup we have

lim sup
k→∞

ak = lim
k→∞

ak , lim sup
k→∞

bk = lim
k→∞

bk , lim sup
k→∞

ck = lim
k→∞

ck .

The crucial observation is that for every k ∈ N we have

cl = albl ≤ akbk for every l ≥ k ,

which yields the inequality

ck = sup{cl : l ≥ k} ≤ akbk .

This inequality and the properties of limits then imply

lim sup
k→∞

akbk = lim sup
k→∞

ck = lim
k→∞

ck ≤ lim
k→∞

akbk

=
(

lim
k→∞

ak

)(
lim
k→∞

bk

)
=
(

lim sup
k→∞

ak

)(
lim sup
k→∞

bk

)
.

This is the inequality that we were asked to prove. �

Solution (b). Let ρ > 1. Let {ak}k∈N be any bounded, positive sequence such that

lim inf
k→∞

ak =
1

ρ
, and lim sup

k→∞
ak = ρ .

For example, we can simply take

ak = ρ(−1)
k

=

ρ for k even
1

ρ
for k odd .

Set bk = 1/ak for every k ∈ N. Then

lim sup
k→∞

bk = lim sup
k→∞

1

ak
=

1

lim infk→∞ ak
= ρ ,

whereby

lim sup
k→∞

akbk = 1 < ρ2 =
(

lim sup
k→∞

ak

)(
lim sup
k→∞

bk

)
.

So equality does not hold for the bounded, positive sequences {ak}k∈N and {bk}k∈N.
�
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6. [10] Let {ak}k∈N ⊂ R be a sequence and {ank
}k∈N be a subsequence of it. Show that

∞∑
k=0

ak converges absolutely =⇒
∞∑
k=0

ank
converges absolutely .

Solution. By the definition of absolute convergence of a series
∞∑
k=0

ak converges absolutely ⇐⇒
∞∑
k=0

|ak| converges ,

∞∑
k=0

ank
converges absolutely ⇐⇒

∞∑
k=0

|ank
| converges .

By the definition of a convergent series, each of the series on the right-hand side above
is convergent if and only if its associated sequence of partial sums is convergent. These
sequences of partial sums are given by {qn} and {pm} respectively where qn and pm
are defined for every n,m ∈ N by

qn =
n∑

k=0

|ak| , pm =
m∑
k=0

|ank
| .

It is clear that these sequences are nondecreasing. The Monotonic Sequence Theorem
then implies that these sequences converge if and only if they are bounded above.
Therefore

∞∑
k=0

|ak| converges ⇐⇒ {qn} is bounded above ,

∞∑
k=0

|ank
| converges ⇐⇒ {pm} is bounded above .

The crucial observation is that pm and qn satisfy the inequality

pm =
m∑
k=0

|ank
| ≤

nm∑
k=0

|ak| = qnm for every m ∈ N .

This inequality shows that if {qn} is bounded above then {pm} is bounded above.
Therefore

∞∑
k=0

ak converges absolutely ⇐⇒ {qn} is bounded above

=⇒ {pm} is bounded above

⇐⇒
∞∑
k=0

ank
converges absolutely .

�

Remark. This proof involves three notions of convergence: (1) absolute convergence
of a series, (2) convergence of a series, and (3) convergence of a sequence. Whenever
“converges” appears in your solution it should be clear which notion is being used.
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7. [10] Let A ⊂ R be bounded above. Let Ac denote the closure A. Prove sup{A} ∈ Ac.

Solution. Because A ⊂ R is bounded above, we know A has an upper bound in R.
Therefore sup{A}, which is the least upper bound of A, is also in R. Let a = sup{A}.
We want to show that a ∈ Ac.

For every n ∈ N the set A ∩ (a − 2−n,∞) is nonempty because otherwise every
point in (a− 2−n,∞) would be an upper bound of A, which contradicts the fact that
a is the least upper bound of A. Now for every n ∈ N let an ∈ A ∩ (a − 2−n,∞).
Then because a is an upper bound for A we have

a− 2−n < an ≤ a for every n ∈ N .
Therefore

|an − a| = a− an < 2−n for every n ∈ N ,
which implies that an → a as n→∞. Because {an}n∈N ⊂ A and an → a as n→∞,
we conclude that a ∈ Ac. �

8. [10] Determine all a ∈ R for which
∞∑
k=0

(
k2 + 1

k4 + 1

)a

converges .

Give your reasoning.

Solution. The series converges for a ∈ (1
2
,∞) and diverges otherwise. Because

k2 + 1

k4 + 1
∼ 1

k2
as k →∞ ,

we see that the original series should be compared with the p-series
∞∑
k=1

1

k2a
.

This is best handled by Two-Way Limit Comparison Test. Indeed, for every a ∈ R
we have

lim
k→∞

(
k2 + 1

k4 + 1

)a

1

k2a

= lim
k→∞

(
k4 + k2

k4 + 1

)a

= lim
k→∞

1 +
1

k2

1 +
1

k4


a

= 1 ,

so the Two-Way Limit Comparison Test implies that
∞∑
k=0

(
k2 + 1

k4 + 1

)a

converges ⇐⇒
∞∑
k=1

1

k2a
converges .

Because the p = 2a for the p-series, it converges for a ∈ (1
2
,∞) and diverges otherwise.

The same is thereby true for the original series. �

Remark. The Two-Way Direct Comparison Test can be used, but not as efficiently
because the sign of a matters. A proof might start with the bounds

1

k2
≤ k2 + 1

k4 + 1
≤ 2

k2
for every k ∈ Z+ .
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9. [10] Let {bk}k∈N be a sequence in R and let A be a subset of R. Write the negations
of the following assertions.
(a) “For some ε > 0 we have |bj − 3| ≥ ε frequently as j →∞.”
(b) “Every sequence in A has a subsequence that converges to a limit in A.”

Solution (a). “For every ε > 0 we have |bj − 3| < ε eventually as j →∞.” �

Solution (b). “There is a sequence in A such that every subsequence of it either
diverges or converges to a limit outside A.” �

Remark. The answer “There is a sequence in A such that no subsequence of it
converges to a limit in A.” does not fully carry the negation through.

Remark. Assertion (a) is equivalent to the sequence {bk} converges to 3. Assertion
(b) is the definition that the set A is sequentially compact.


