First In-Class Exam Solutions Math 410, Professor David Levermore Thursday, 28 September 2017

1. [10] Let $a \in \mathbb{R}$ have the property that a < 1/k for every $k \in \mathbb{Z}_+$. Prove $a \leq 0$.

Solution. This is a proof by contradiction. Suppose the negation of the assertion. Specifically, suppose that a > 0. Then by the Archimedean Property there exists an $n \in \mathbb{Z}_+$ such that na > 1, which implies that $\frac{1}{n} < a$. But this contradicts the property that a < 1/k for every $k \in \mathbb{Z}_+$. Therefore $a \le 0$.

Alternative Solution. The property that a < 1/k for every $k \in \mathbb{Z}_+$ implies that a is a lower bound of the set $S = \{\frac{1}{k} : k \in \mathbb{Z}_+\}$. It follows that $a \leq \inf\{S\}$, because $\inf\{S\}$ is the greatest lower bound of the set S. We claim that $\inf\{S\} = 0$. Indeed, because $0 < \frac{1}{k}$ for every $k \in \mathbb{Z}_+$, we see that 0 is also a lower bound of S. Moreover, for every b > 0 the Archimedean Property implies there exists an $n \in \mathbb{Z}_+$ such that nb > 1. This implies that $\frac{1}{n} < b$, which means that b is not a lower bound for S. Therefore $\inf\{S\} = 0$, which implies that $a \leq 0$.

2. [10] Prove that for every nonzero $x \in \mathbb{R}$ we have the inequality

$$1 + \frac{4}{3}x < (1+x)^{\frac{4}{3}}.$$

Solution. Let $x \in \mathbb{R}$ be nonzero. Because for every $y, z \in \mathbb{R}$ we know that y < z if and only if $y^{\frac{1}{3}} < z^{\frac{1}{3}}$, it is enough to prove the inequality

$$(1 + \frac{4}{3}x)^3 < (1+x)^4.$$

By the binomial formula we have

$$(1+x)^4 = 1 + 4x + 6x^2 + 4x^3 + x^4,$$

$$(1+\frac{4}{3}x)^3 = 1 + 4x + \frac{16}{3}x^2 + \frac{64}{27}x^3.$$

Therefore

$$(1+x)^4 - (1+\frac{4}{3}x)^3 = \left(6 - \frac{16}{3}\right)x^2 + \left(4 - \frac{64}{27}\right)x^3 + x^4$$
$$= \frac{2}{3}x^2 + \frac{44}{27}x^3 + x^4 = x^2\left(x^2 + \frac{44}{27}x + \frac{2}{3}\right)$$
$$= x^2\left[\left(x - \frac{22}{27}\right)^2 + \frac{2}{3} - \left(\frac{22}{27}\right)^2\right].$$

Because $x \neq 0$ we see that $x^2 > 0$. Because

$$\frac{2}{3} - \left(\frac{22}{27}\right)^2 = \frac{2}{3} - \left(\frac{2}{3} \cdot \frac{11}{9}\right)^2 = \frac{2}{3}\left(1 - \frac{2}{3} \cdot \frac{121}{81}\right) = \frac{2}{3}\left(1 - \frac{242}{243}\right) = \frac{2}{3} \cdot \frac{1}{243} > 0,$$

we see that the factor in the square brackets above is also positive. We conclude that for every nonzero $x \in \mathbb{R}$ we have

$$(1 + \frac{4}{3}x)^3 < (1+x)^4,$$

whereby for every nonzero $x \in \mathbb{R}$ we have

$$1 + \frac{4}{3}x < (1+x)^{\frac{4}{3}}.$$

Therefore we have proved the asserted inequality.

Alternative Solution. This is a proof by contradiction. Suppose the negation of the assertion. Specifically, suppose that there exists some nonzero $c \in \mathbb{R}$ such that

$$1 + \frac{4}{3}c \ge (1+c)^{\frac{4}{3}}.$$

Because for every $y, z \in \mathbb{R}$ we know that $z \geq y$ implies $z^3 \geq y^3$, it follows that

$$(1 + \frac{4}{3}c)^3 \ge (1+c)^4$$
.

By the binomial formula we have

$$(1+c)^4 = 1 + 4c + 6c^2 + 4c^3 + c^4$$
$$(1+\frac{4}{3}c)^3 = 1 + 4c + \frac{16}{3}c^2 + \frac{64}{27}c^3.$$

Therefore the inequality satisfied by c becomes

$$\frac{16}{3}c^2 + \frac{64}{27}c^3 \ge 6c^2 + 4c^3 + c^4,$$

which implies that

$$0 \ge \left(6 - \frac{16}{3}\right)c^2 + \left(4 - \frac{64}{27}\right)c^3 + c^4$$

$$= \frac{2}{3}c^2 + \frac{44}{27}c^3 + c^4 = c^2\left(c^2 + \frac{44}{27}c + \frac{2}{3}\right)$$

$$= c^2\left[\left(c - \frac{22}{27}\right)^2 + \frac{2}{3} - \left(\frac{22}{27}\right)^2\right].$$

Because $c \neq 0$ we see that $c^2 > 0$. Because

$$\tfrac{2}{3} - \left(\tfrac{22}{27}\right)^2 = \tfrac{2}{3} - \left(\tfrac{2}{3} \cdot \tfrac{11}{9}\right)^2 = \tfrac{2}{3} \left(1 - \tfrac{2}{3} \cdot \tfrac{121}{81}\right) = \tfrac{2}{3} \left(1 - \tfrac{242}{243}\right) = \tfrac{2}{3} \cdot \tfrac{1}{243} > 0 \,,$$

we see that the factor in the square brackets above is also positive. Therefore we have shown that 0 is greater than or equal to a positive number, which is a contradiction. Hence, no such c exists. Therefore the asserted inequality holds.

- 3. [15] Give a counterexample to each of the following false assertions.
 - (a) If a sequence $\{a_k\}_{k\in\mathbb{N}}$ in \mathbb{R} diverges then the subsequence $\{a_{2k}\}_{k\in\mathbb{N}}$ diverges.
 - (b) A countable intersection of nested nonempty open intervals is also nonempty.
 - (c) If $\lim_{k\to\infty} a_k = 0$ then $\sum_{k=0}^{\infty} a_k$ converges.

Solution (a). A simple counterexample is obtained by setting $a_k = (-1)^k$ for every $k \in \mathbb{N}$. Then the sequence $\{a_k\}_{k \in \mathbb{N}}$ diverges but the subsequence $\{a_k^2\}_{k \in \mathbb{N}}$ converges to 1 because $a_k^2 = (-1)^{2k} = 1$.

Solution (b). Any countable intersection of nested nonempty open intervals must have the form

$$\bigcap_{k=0}^{\infty} (a_k, b_k)$$

where $a_k < b_k$ and $(a_{k+1}, b_{k+1}) \subset (a_k, b_k)$ for every $k \in \mathbb{N}$. Such an intersection that is empty is obtained by setting $a_k = 0$ and $b_k = 2^{-k}$ for every $k \in \mathbb{N}$.

Solution (c). A simple counterexample is obtained by setting $a_k = \frac{1}{k}$ for every $k \in \mathbb{Z}_+$ because

$$\lim_{k\to\infty}\frac{1}{k}=0\,,\quad\text{while the harmonic series}\quad\sum_{k=1}^\infty\frac{1}{k}\quad\text{diverges}\,.$$

4. [10] Consider the real sequence $\{b_k\}_{k\in\mathbb{N}}$ given by

$$b_k = (-1)^k \frac{2k+4}{k+1}$$
 for every $k \in \mathbb{N} = \{0, 1, 2, \dots\}$.

- (a) [3] Write down the first three terms of the subsequence $\{b_{2k}\}_{k\in\mathbb{N}}$.
- (b) [3] Write down the first three terms of the subsequence $\{b_{2^k}\}_{k\in\mathbb{N}}$.
- (c) [4] Write down $\liminf_{k\to\infty} b_k$ and $\limsup_{k\to\infty} b_k$. (No proof is needed here.)

Remark. We are given that $\mathbb{N} = \{0, 1, 2, \dots\}$, as was the convention in the notes.

Solution (a). When k = 0, 1, 2 we have 2k = 0, 2, 4, whereby the first three terms of the subsequence $\{b_{2k}\}_{k\in\mathbb{N}}$ are

$$b_0 = (-1)^0 \frac{2 \cdot 0 + 4}{0 + 1} = 4$$
, $b_2 = (-1)^2 \frac{2 \cdot 2 + 4}{2 + 1} = \frac{8}{3}$, $b_4 = (-1)^4 \frac{2 \cdot 4 + 4}{4 + 1} = \frac{12}{5}$.

Solution (b). When k = 0, 1, 2 we have $2^k = 1, 2, 4$, whereby the first three terms of the subsequence $\{b_{2^k}\}_{k \in \mathbb{N}}$ are

$$b_1 = (-1)^1 \frac{2 \cdot 1 + 4}{1 + 1} = -3, \qquad b_2 = \frac{8}{3}, \qquad b_4 = \frac{12}{5}.$$

Solution (c) Because $b_{2k+1} < 0$ while $b_{2k} > 0$, and because

$$\lim_{k \to \infty} b_{2k+1} = \lim_{k \to \infty} \left((-1)^{2k+1} \frac{2(2k+1)+4}{(2k+1)+1} \right) = -\lim_{k \to \infty} \frac{4k+6}{2k+2} = -2,$$

while

$$\lim_{k \to \infty} b_{2k} = \lim_{k \to \infty} \left((-1)^{2k} \frac{2(2k) + 5}{(2k) + 2} \right) = \lim_{k \to \infty} \frac{4k + 5}{2k + 2} = 2,$$

we see that

$$\liminf_{k \to \infty} b_k = \lim_{k \to \infty} b_{2k+1} = -2, \qquad \limsup_{k \to \infty} b_k = \lim_{k \to \infty} b_{2k} = 2.$$

Remark. Proposition 2.17 can be used to prove the answers to (c).

- 5. [15] Let $\{a_k\}_{k\in\mathbb{N}}$ and $\{b_k\}_{k\in\mathbb{N}}$ be bounded, positive sequences in \mathbb{R} .
 - (a) [10] Prove that

$$\limsup_{k \to \infty} (a_k b_k) \le \left(\limsup_{k \to \infty} a_k \right) \left(\limsup_{k \to \infty} b_k \right).$$

(b) [5] Give an example for which equality does not hold above.

Remark. This is a variant of the problem from the homework to prove that

$$\limsup_{k\to\infty} (a_k + b_k) \le \limsup_{k\to\infty} a_k + \limsup_{k\to\infty} b_k.$$

The proofs of these two inequalities are very similar.

Solution (a). Let $c_k = a_k b_k$ for every $k \in \mathbb{N}$. For every $k \in \mathbb{N}$ we define

$$\overline{a}_k = \sup\{a_l : l \ge k\}, \qquad \overline{b}_k = \sup\{b_l : l \ge k\}, \qquad \overline{c}_k = \sup\{c_l : l \ge k\}.$$

Because the sequences $\{a_k\}_{k\in\mathbb{N}}$, $\{b_k\}_{k\in\mathbb{N}}$, and $\{c_k\}_{k\in\mathbb{N}}$ are bounded above and positive, for every $k\in\mathbb{N}$ we have

$$0 < \overline{a}_k < \infty$$
, $0 < \overline{b}_k < \infty$, $0 < \overline{c}_k < \infty$.

The real sequences $\{\overline{a}_k\}_{k\in\mathbb{N}}$, $\{\overline{b}_k\}_{k\in\mathbb{N}}$, and $\{\overline{c}_k\}_{k\in\mathbb{N}}$ are nonincreasing because their terms are supremums of successively smaller sets. Moreover, they are bounded below because $\{a_k\}_{k\in\mathbb{N}}$, $\{b_k\}_{k\in\mathbb{N}}$, and $\{c_k\}_{k\in\mathbb{N}}$ are positive. Therefore they converge by Montonic Sequence Convergence Theorem. By the definition of \limsup we have

$$\limsup_{k\to\infty} a_k = \lim_{k\to\infty} \overline{a}_k \,, \qquad \limsup_{k\to\infty} b_k = \lim_{k\to\infty} \overline{b}_k \,, \qquad \limsup_{k\to\infty} c_k = \lim_{k\to\infty} \overline{c}_k \,.$$

The crucial observation is that for every $k \in \mathbb{N}$ we have

$$c_l = a_l b_l \le \overline{a}_k \overline{b}_k$$
 for every $l \ge k$,

which yields the inequality

$$\overline{c}_k = \sup\{c_l : l \ge k\} \le \overline{a}_k \overline{b}_k$$
.

This inequality and the properties of limits then imply

$$\limsup_{k \to \infty} a_k b_k = \limsup_{k \to \infty} c_k = \lim_{k \to \infty} \overline{c}_k \le \lim_{k \to \infty} \overline{a}_k \overline{b}_k
= \left(\lim_{k \to \infty} \overline{a}_k\right) \left(\lim_{k \to \infty} \overline{b}_k\right)
= \left(\limsup_{k \to \infty} a_k\right) \left(\limsup_{k \to \infty} b_k\right).$$

This is the inequality that we were asked to prove.

Solution (b). Let $\rho > 1$. Let $\{a_k\}_{k \in \mathbb{N}}$ be any bounded, positive sequence such that

$$\lim_{k \to \infty} \inf a_k = \frac{1}{\rho}, \quad \text{and} \quad \lim_{k \to \infty} \sup a_k = \rho.$$

For example, we can simply take

$$a_k = \rho^{(-1)^k} = \begin{cases} \rho & \text{for } k \text{ even} \\ \frac{1}{\rho} & \text{for } k \text{ odd} \end{cases}$$

Set $b_k = 1/a_k$ for every $k \in \mathbb{N}$. Then

$$\limsup_{k \to \infty} b_k = \limsup_{k \to \infty} \frac{1}{a_k} = \frac{1}{\liminf_{k \to \infty} a_k} = \rho,$$

whereby

$$\limsup_{k \to \infty} a_k b_k = 1 < \rho^2 = \left(\limsup_{k \to \infty} a_k \right) \left(\limsup_{k \to \infty} b_k \right).$$

So equality does not hold for the bounded, positive sequences $\{a_k\}_{k\in\mathbb{N}}$ and $\{b_k\}_{k\in\mathbb{N}}$.

6. [10] Let $\{a_k\}_{k\in\mathbb{N}}\subset\mathbb{R}$ be a sequence and $\{a_{n_k}\}_{k\in\mathbb{N}}$ be a subsequence of it. Show that

$$\sum_{k=0}^{\infty} a_k \quad \text{converges absolutely} \quad \Longrightarrow \quad \sum_{k=0}^{\infty} a_{n_k} \quad \text{converges absolutely} \,.$$

Solution. By the definition of absolute convergence of a series

$$\sum_{k=0}^{\infty} a_k \quad \text{converges absolutely} \quad \Longleftrightarrow \quad \sum_{k=0}^{\infty} |a_k| \quad \text{converges} \,,$$

$$\sum_{k=0}^{\infty} a_{n_k} \quad \text{converges absolutely} \quad \Longleftrightarrow \quad \sum_{k=0}^{\infty} |a_{n_k}| \quad \text{converges} \,.$$

By the definition of a convergent series, each of the series on the right-hand side above is convergent if and only if its associated sequence of partial sums is convergent. These sequences of partial sums are given by $\{q_n\}$ and $\{p_m\}$ respectively where q_n and p_m are defined for every $n, m \in \mathbb{N}$ by

$$q_n = \sum_{k=0}^n |a_k|, \qquad p_m = \sum_{k=0}^m |a_{n_k}|.$$

It is clear that these sequences are nondecreasing. The Monotonic Sequence Theorem then implies that these sequences converge if and only if they are bounded above. Therefore

$$\sum_{k=0}^{\infty} |a_k| \quad \text{converges} \quad \iff \quad \{q_n\} \text{ is bounded above },$$

$$\sum_{k=0}^{\infty} |a_{n_k}| \quad \text{converges} \quad \iff \quad \{p_m\} \text{ is bounded above }.$$

The crucial observation is that p_m and q_n satisfy the inequality

$$p_m = \sum_{k=0}^m |a_{n_k}| \le \sum_{k=0}^{n_m} |a_k| = q_{n_m} \quad \text{for every } m \in \mathbb{N}.$$

This inequality shows that if $\{q_n\}$ is bounded above then $\{p_m\}$ is bounded above. Therefore

$$\sum_{k=0}^{\infty} a_k \quad \text{converges absolutely} \quad \Longleftrightarrow \quad \{q_n\} \text{ is bounded above}$$

$$\implies \quad \{p_m\} \text{ is bounded above}$$

$$\iff \quad \sum_{k=0}^{\infty} a_{n_k} \quad \text{converges absolutely} \,.$$

Remark. This proof involves three notions of convergence: (1) absolute convergence of a series, (2) convergence of a series, and (3) convergence of a sequence. Whenever "converges" appears in your solution it should be clear which notion is being used.

7. [10] Let $A \subset \mathbb{R}$ be bounded above. Let A^c denote the closure A. Prove $\sup\{A\} \in A^c$.

Solution. Because $A \subset \mathbb{R}$ is bounded above, we know A has an upper bound in \mathbb{R} . Therefore $\sup\{A\}$, which is the least upper bound of A, is also in \mathbb{R} . Let $a = \sup\{A\}$. We want to show that $a \in A^c$.

For every $n \in \mathbb{N}$ the set $A \cap (a-2^{-n}, \infty)$ is nonempty because otherwise every point in $(a-2^{-n}, \infty)$ would be an upper bound of A, which contradicts the fact that a is the least upper bound of A. Now for every $n \in \mathbb{N}$ let $a_n \in A \cap (a-2^{-n}, \infty)$. Then because a is an upper bound for A we have

$$a-2^{-n} < a_n \le a$$
 for every $n \in \mathbb{N}$.

Therefore

$$|a_n - a| = a - a_n < 2^{-n}$$
 for every $n \in \mathbb{N}$,

which implies that $a_n \to a$ as $n \to \infty$. Because $\{a_n\}_{n \in \mathbb{N}} \subset A$ and $a_n \to a$ as $n \to \infty$, we conclude that $a \in A^c$.

8. [10] Determine all $a \in \mathbb{R}$ for which

$$\sum_{k=0}^{\infty} \left(\frac{k^2 + 1}{k^4 + 1} \right)^a \quad \text{converges} \,.$$

Give your reasoning.

Solution. The series converges for $a \in (\frac{1}{2}, \infty)$ and diverges otherwise. Because

$$\frac{k^2+1}{k^4+1} \sim \frac{1}{k^2} \quad \text{as } k \to \infty \,,$$

we see that the original series should be compared with the p-series

$$\sum_{k=1}^{\infty} \frac{1}{k^{2a}} .$$

This is best handled by Two-Way Limit Comparison Test. Indeed, for every $a \in \mathbb{R}$ we have

$$\lim_{k \to \infty} \frac{\left(\frac{k^2 + 1}{k^4 + 1}\right)^a}{\frac{1}{k^{2a}}} = \lim_{k \to \infty} \left(\frac{k^4 + k^2}{k^4 + 1}\right)^a = \lim_{k \to \infty} \left(\frac{1 + \frac{1}{k^2}}{1 + \frac{1}{k^4}}\right)^a = 1,$$

so the Two-Way Limit Comparison Test implies that

$$\sum_{k=0}^{\infty} \left(\frac{k^2+1}{k^4+1}\right)^a \quad \text{converges} \quad \Longleftrightarrow \quad \sum_{k=1}^{\infty} \frac{1}{k^{2a}} \quad \text{converges} \,.$$

Because the p = 2a for the *p*-series, it converges for $a \in (\frac{1}{2}, \infty)$ and diverges otherwise. The same is thereby true for the original series.

Remark. The Two-Way Direct Comparison Test can be used, but not as efficiently because the sign of a matters. A proof might start with the bounds

$$\frac{1}{k^2} \le \frac{k^2 + 1}{k^4 + 1} \le \frac{2}{k^2} \quad \text{for every } k \in \mathbb{Z}_+.$$

- 9. [10] Let $\{b_k\}_{k\in\mathbb{N}}$ be a sequence in \mathbb{R} and let A be a subset of \mathbb{R} . Write the negations of the following assertions.
 - (a) "For some $\epsilon > 0$ we have $|b_j 3| \ge \epsilon$ frequently as $j \to \infty$."
 - (b) "Every sequence in A has a subsequence that converges to a limit in A."

Solution (a). "For every $\epsilon > 0$ we have $|b_j - 3| < \epsilon$ eventually as $j \to \infty$."

Solution (b). "There is a sequence in A such that every subsequence of it either diverges or converges to a limit outside A."

Remark. The answer "There is a sequence in A such that no subsequence of it converges to a limit in A." does not fully carry the negation through.

Remark. Assertion (a) is equivalent to the sequence $\{b_k\}$ converges to 3. Assertion (b) is the definition that the set A is sequentially compact.