MATH410: Solution Assignment 1

Problem 1:

Show that statement A_n holds for n = 2, 3, ...

statement
$$A_n$$
: $x^n = p^n + np^{n-1}(x-p) + (x-p)^2 \sum_{k=1}^{n-1} kp^{k-1} x^{n-1-k}$ (1)

Show: statment A₂ holds: We have to show

$$x^{2} = p^{2} + 2p(x - p) + (x - p)^{2}$$

We obtain this by applying the distributive property on the right hand side.

Show: statement A_n implies statement A_{n+1} for n = 2, 3, ...: Multiplying A_n by x and using x = (x - p) + p gives

$$x^{n+1} = p^{n}x + \underbrace{np^{n-1}(x-p)x}_{np^{n-1}(x-p)^{2} + \underbrace{np^{n-1}(x-p)p}_{-np^{n+1}}}_{np^{n}x} + (x-p)^{2} \left[1 \cdot p^{0}x^{n-2} + 2p^{1}x^{n-3} + \dots + (n-1)p^{n-2}x^{0}\right]x$$

$$x^{n+1} = p^{n+1} + (n+1)p^{n}x - (n+1)p^{n}p + (x-p)^{2} \left[1 \cdot p^{0}x^{n-1} + 2p^{1}x^{n-2} + \dots + (n-1)p^{n-2}x^{1} + np^{n-1}x^{0}\right]$$

which is statement A_{n+1} .

Problem 2(a):

Let $f(x) := x^n - b$, g(x) := f(p) + f'(p)(x - p). Assume $p \in \mathbb{R}_+$ with $p^n > b$. Define $q := p - \frac{p^n - b}{np^{n-1}}$. Show q < p: Since $p^n > b$, p > 0, we have $\frac{p^n - b}{np^{n-1}} > 0$. Show 0 < q: Since b > 0, we have $q = p - \frac{p^n - b}{np^{n-1}} > p - \frac{p^n}{np^{n-1}} = (1 - \frac{1}{n})p > 0$ for $n \ge 2$. Show g(q) < f(q): From (1) we get with $S := \sum_{k=1}^{n-1} kp^{k-1}x^{n-1-k}$

$$x^{n} - b = p^{n} - b + np^{n-1}(x - p) + (x - p)^{2}S$$

$$f(x) = g(x) + (x - p)^{2}S$$

$$f(q) = g(q) + \underbrace{(q - p)^{2}}_{>0} \sum_{k=1}^{n-1} \underbrace{kp^{k-1}q^{n-1-k}}_{>0}$$
(2)

Problem 2(b):

Assume $\tilde{p}^n > b$. Let $p := b/\tilde{p}^{n-1}$. Then $p^n = b^n/(\tilde{p}^n)^{n-1} > b^n/b^{n-1} = b$. From (a) we obtain q < p with $q^n > b$. Now we can define $\tilde{q} := (b/q)^{1/(n-1)}$: We have c := b/q > 0. Using induction we can assume that (*) holds for n-1, hence there is a unique $d = c^{1/(n-1)} \in \mathbb{R}_+$ with $d^{n-1} = c$. We have b/q > b/p. Hence (3) gives $\tilde{q} := (b/q)^{1/(n-1)} > (b/p)^{1/(n-1)} = \tilde{p}$. From $q^n > b$ we get $\tilde{q}^n = b^n/(q^n)^{(n-1)} < b^n/b^{n-1} = b$.

Problem 2(c):

Show: For $b \in \mathbb{R}_+$ and $n \in \{2, 3, 4, ...\}$ there exists a unique $a \in \mathbb{R}_+$ with $a^n = b$. We will use: For $y, z \in \mathbb{R}_+$ and $n \in \{2, 3, 4, ...\}$ we have

$$y^n > z^n \implies y > z \tag{3}$$

Proof: Assume $y \le z$. Then Proposition 1.10(b) in the notes implies $y^n \le z^n$.

Proof of existence: Consider the set $A := \{x \in \mathbb{R}_+ : x^n < b\}$.

The set *A* is nonempty: We have s := b/(b+1) < 1, hence $s^n < s$. We also have s < b, hence $s^n < s < b$, i.e., $s \in A$.

The set *A* is bounded from above: We have t := b + 1 > 1, hence $t^n > t > b$. Let $x \in A$, then $x^n < b < t^n$ which implies x < t by (3). Therefore *t* is an upper bound for the set *A*.

By the least upper bound property the set A has a least upper bound

$$a := \sup A \tag{4}$$

We now show that $a^n = b$ using trichotomy:

Assume $a^n < b$ holds. Then by (b) there exists $\tilde{q} > a$ with $\tilde{q}^n < b$, i.e., $\tilde{q} \in A$. Then *a* is not an upper bound of *A*, contradicting (4).

Assume $a^n > b$ holds. Then by (a) there exists q < a with $q^n > b$. Let $x \in A$, then $x^n < b < q^n$ which implies x < q by (3). Therefore q is an upper bound for the set A. But q < a contradicts that a is the least upper bound. **Proof of uniqueness:** This follows from (3).

Problem 3(a):

We have $a_0^n > b$. Assume $a_k^n > b$ for $k \in \{0, 1, 2, ...\}$. Then we obtain from 2(a) that $a_{k+1} = a_k - \frac{a_k^n - b}{na_k^{n-1}}$ satisfies $a_{k+1} < a_k$ and $a_{k+1}^n - b > 0$. Therefore we obtain by induction that the statements $a_{k+1} < a_k$ and $a_k^n > b$ hold for all $k \in \{0, 1, 2, ...\}$.

Problem 3(b):

The sequence a_k is nonincreasing and bounded from below. By the monotonic sequence theorem the sequence a_k converges. Hence the limit $a_* := \lim_{k\to\infty} a_k$ exists. $a_k > b^{1/n}$ implies $a_* \ge b^{1/n} > 0$. In $a_{k+1} = a_k - \frac{a_k^n - b}{na_k^{n-1}}$ we take the limit for $k \to \infty$, yielding with Proposition 2.9 $a_* = a_* - \frac{a_*^n - b}{na_*^{n-1}}$. Hence $a_* > 0$ satisfies $a_*^n = b$. By problem 2 we must have $a_* = b^{1/n}$.

Problem 3(c):

Let $p = a_k$ and $x = a_*$. Then (2) gives $f(a_*) = g(a_*) + (a_* - a_k)^2 S$ with $S = \sum_{j=1}^{n-1} j a_k^{j-1} a_*^{n-1-j}$. We have $f(a_*) = a_*^n - b = 0$. Note that a_{k+1} is defined so that $g(a_{k+1}) = 0$. We get

$$f(a_*) = g(a_*) + (a_* - a_k)^2 S$$

$$\underbrace{g(a_{k+1}) - g(a_*)}_{f'(a_k)(a_{k+1} - a_*)} = (a_* - a_k)^2 S$$

$$a_{k+1} - a_* = (a_* - a_k)^2 \frac{S}{na_k^{n-1}}$$

From (a) we have $a_* < a_k$, hence $S = \sum_{j=1}^{n-1} j a_k^{j-1} a_*^{n-1-j} < \sum_{j=1}^{n-1} j a_k^{n-2} = \frac{n(n-1)}{2} a_k^{n-2}$ since $\sum_{j=1}^{n-1} j = \frac{n(n-1)}{2}$ (this was proved in class). This gives

$$a_{k+1} - a_* \le (a_* - a_k)^2 \frac{\frac{n(n-1)}{2} a_k^{n-2}}{n a_k^{n-1}} = (a_* - a_k)^2 \frac{n-1}{2a_k} \le (a_* - a_k)^2 \frac{n-1}{2a_*}$$