
MATH410: Solution Assignment 1

Problem 1:

Show that statement An holds for n = 2,3, . . .

statement An : xn = pn +npn−1(x− p)+(x− p)2
n−1

∑
k=1

kpk−1xn−1−k (1)

Show: statment A2 holds: We have to show

x2 = p2 +2p(x− p)+(x− p)2

We obtain this by applying the distributive property on the right hand side.

Show: statement An implies statement An+1 for n = 2,3, . . .: Multiplying An by x and using x = (x− p)+ p gives

xn+1 = pnx+ npn−1(x− p)x︸ ︷︷ ︸
npn−1(x− p)2 + npn−1(x− p)p︸ ︷︷ ︸

npnx −npn+1︸ ︷︷ ︸
−(n+1)pn+1 + pn+1

+(x− p)2 [1 · p0xn−2 +2p1xn−3 + · · ·+(n−1)pn−2x0]x

xn+1 = pn+1 +(n+1)pnx− (n+1)pn p+(x− p)2 [1 · p0xn−1 +2p1xn−2 + · · ·+(n−1)pn−2x1 +npn−1x0]
which is statement An+1.

Problem 2(a):

Let f (x) := xn−b, g(x) := f (p)+ f ′(p)(x− p). Assume p ∈ R+ with pn > b. Define q := p− pn−b
npn−1 .

Show q < p: Since pn > b, p > 0, we have pn−b
npn−1 > 0.

Show 0 < q: Since b > 0, we have q = p− pn−b
npn−1 > p− pn

npn−1 = (1− 1
n
)p > 0 for n≥ 2.

Show g(q)< f (q): From (1) we get with S := ∑
n−1
k=1 kpk−1xn−1−k

xn−b = pn−b+npn−1(x− p)+(x− p)2S

f (x) = g(x)+(x− p)2S (2)

f (q) = g(q)+(q− p)2︸ ︷︷ ︸
> 0

n−1

∑
k=1

kpk−1qn−1−k︸ ︷︷ ︸
> 0

Problem 2(b):

Assume p̃n > b. Let p := b/ p̃n−1. Then pn = bn/(p̃n)n−1 > bn/bn−1 = b. From (a) we obtain q < p with qn > b.
Now we can define q̃ := (b/q)1/(n−1): We have c := b/q > 0. Using induction we can assume that (∗) holds for n−1, hence
there is a unique d = c1/(n−1) ∈ R+ with dn−1 = c).
We have b/q > b/p. Hence (3) gives q̃ := (b/q)1/(n−1) > (b/p)1/(n−1) = p̃ . From qn > b we get q̃n = bn/(qn)(n−1) <
bn/bn−1 = b.
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Problem 2(c):

Show: For b ∈ R+ and n ∈ {2,3,4, . . .} there exists a unique a ∈ R+ with an = b.
We will use: For y,z ∈ R+ and n ∈ {2,3,4, . . .} we have

yn > zn =⇒ y > z (3)

Proof: Assume y≤ z. Then Proposition 1.10(b) in the notes implies yn ≤ zn.

Proof of existence: Consider the set A := {x ∈ R+ : xn < b}.
The set A is nonempty: We have s := b/(b+1)< 1, hence sn < s. We also have s < b, hence sn < s < b, i.e., s ∈ A.
The set A is bounded from above: We have t := b+1 > 1, hence tn > t > b. Let x ∈ A, then xn < b < tn which implies x < t
by (3). Therefore t is an upper bound for the set A.
By the least upper bound property the set A has a least upper bound

a := sup A (4)

We now show that an = b using trichotomy:
Assume an < b holds. Then by (b) there exists q̃ > a with q̃n < b, i.e., q̃ ∈ A. Then a is not an upper bound of A, contradict-
ing (4).
Assume an > b holds. Then by (a) there exists q < a with qn > b. Let x ∈ A, then xn < b < qn which implies x < q by (3).
Therefore q is an upper bound for the set A. But q < a contradicts that a is the least upper bound.
Proof of uniqueness: This follows from (3).

Problem 3(a):

We have an
0 > b. Assume an

k > b for k ∈ {0,1,2, . . .}. Then we obtain from 2(a) that ak+1 = ak−
an

k−b
nan−1

k
satisfies ak+1 < ak and

an
k+1−b > 0. Therefore we obtain by induction that the statements ak+1 < ak and an

k > b hold for all k ∈ {0,1,2, . . .}.

Problem 3(b):

The sequence ak is nonincreasing and bounded from below. By the monotonic sequence theorem the sequence ak converges.

Hence the limit a∗ := limk→∞ ak exists. ak > b1/n implies a∗ ≥ b1/n > 0. In ak+1 = ak−
an

k−b
nan−1

k

we take the limit for k→ ∞,

yielding with Proposition 2.9 a∗ = a∗−
an
∗−b

nan−1
∗

. Hence a∗ > 0 satisfies an
∗ = b. By problem 2 we must have a∗ = b1/n.

Problem 3(c):

Let p = ak and x = a∗. Then (2) gives f (a∗) = g(a∗)+(a∗−ak)
2S with S = ∑

n−1
j=1 ja j−1

k an−1− j
∗ . We have f (a∗) = an

∗−b = 0.
Note that ak+1 is defined so that g(ak+1) = 0. We get

f (a∗) = g(a∗)+(a∗−ak)
2S

g(ak+1)−g(a∗)︸ ︷︷ ︸
f ′(ak)(ak+1−a∗)

= (a∗−ak)
2S

ak+1−a∗ = (a∗−ak)
2 S

nan−1
k

From (a) we have a∗ < ak, hence S = ∑
n−1
j=1 ja j−1

k an−1− j
∗ < ∑

n−1
j=1 jan−2

k = n(n−1)
2 an−2

k since ∑
n−1
j=1 j = n(n−1)

2 (this was proved
in class). This gives

ak+1−a∗ ≤ (a∗−ak)
2

n(n−1)
2 an−2

k

nan−1
k

= (a∗−ak)
2 n−1

2ak
≤ (a∗−ak)

2 n−1
2a∗
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