
Math 410: Solution of Exam 1

1. Let A = {p
q
: p, q ∈ N with p < q}. Find inf A, supA and cl(A) and justify your answers.

A is bounded from below by 0. A contains the sequence 1
n
which converges to 0. Hence 0 = inf A.

A is bounded from above by 1. A contains the sequence n−1
n

which converges to 1. Hence 1 = supA.
claim: cl(A) = [0, 1]. We already found sequences which converge to 0 and 1. Let a ∈ (0, 1) and k ∈ N. Then
for x := ka there exists nk ∈ N0 with nk < ka ≤ nk + 1, hence a ∈ (nk

k
, nk+1

n
]. Hence the sequence nk

k
∈ A

converges to a.

2. Find lim inf
k→∞

ak and lim sup
k→∞

ak for the following sequences with k ∈ N:

(a) ak = (−k)k + kk + 1
k

For even k we have ak = 2kk + 1
k
which diverges to +∞ as k →∞.

For odd k we have ak = 1
k
which converges to 0 as k →∞. Hence lim inf

k→∞
ak = 0 and lim sup

k→∞
ak =∞.

(b) ak =

(
−1− 1

k

)k

For even k we have ak = (1 + 1
k
)k which converges to e as k →∞.

For odd k we have ak = −(1 + 1
k
)k which converges to −e as k → ∞. Hence lim inf

k→∞
ak = −e and

lim sup
k→∞

ak = e.

(c) ak = (k + 1)1/3 − k1/3. Hint: Use xn − yn = (x− y)(xn−1y0 + xn−2y + · · ·+ x0yn−1) with x = (k + 1)1/3,
y = k1/3

With n = 3 we get x− y =
x3 − y3

x2 + xy + y2
which gives

ak = (k + 1)1/3 − k1/3 = 1

(k + 1)2/3 + (k + 1)1/3k1/3 + k2/3

Since the denominator tends to ∞ as k → ∞ we have that ak → 0 as k → ∞. Hence lim inf
k→∞

ak =

lim sup
k→∞

ak = 0.

3. Find out for which x ∈ R the series converges, and for which x ∈ R the series diverges. Explain your reasoning.
Be careful to discuss all possible cases for x, including the “borderline” cases.

(a)
∞∑
k=1

xk

k1/22k

We use the ratio test:
|ak+1|
|ak|

=

(
k

k + 1

)1/2 |x|
2

=

(
1 +

1

k

)1/2 |x|
2
→ |x|

2
=: ρ. Now the ratio test gives:

(i) The series converges for ρ < 1 ⇐⇒ |x| < 2.
(ii) The series diverges for ρ > 1 ⇐⇒ |x| > 2.
It remains to investigate the borderline cases x = 2 and x = −2.
For x = 2 we obtain the series

∑∞
k=1

1
k1/2

which diverges to ∞. (Recall:
∑∞

k=1 k
p converges for p < −1

and diverges for p ≥ −1.)
For x = −2 we obtain the series

∑∞
k=1(−1)k

1
k1/2

which is an alternating series with ak → 0, hence it
converges.

(b)
∞∑
k=1

(1 + k4)x. We compare ak := (1 + k4)x > 0 with bk := k4x > 0. Then

ak
bk

=

(
1 + k4

k4

)x

=
(
k−4 + 1

)x → 1 as k → ∞. For q ∈ (0, 1) we have therefore qbk ≤ ak ≤ q−1bk

eventually. This gives:
(i) For 4x < −1 ⇐⇒ x < −1

4
the series

∑
bk converges, hence

∑
ak converges

(ii) For 4x ≥ −1 ⇐⇒ x ≥ −1
4
the series

∑
bk diverges to ∞, hence

∑
ak diverges to ∞.



(c)
∞∑
k=1

(2k)!

k2k
xk

We use the ratio test:
|ak+1|
|ak|

=
(2k + 2)(2k + 1)

k2
|x| =

(
2 +

2

k

)(
2 +

1

k

)
|x| → 4 |x| =: ρ as k →∞. Now

the ratio test gives:
(i) The series converges for ρ < 1 ⇐⇒ |x| < 1

4

(ii) The series diverges for ρ > 1 ⇐⇒ |x| > 1
4
.

It remains to investigate the borderline cases x = 1
4

and x = −1
4
. In this case we have

|ak| =
(2k)!

k2k4k
=

(2k)!

(2k)2k
=

2k∏
j=1

j

k
≤
(
1

2

)k

1k since the first k factors are bounded by 1
2
and the remain-

ing factors are bounded by 1. Hence
∑
|ak| can be bounded from above by a convergent geometric series.

Therefore the series
∑
ak converges absolutely for |x| = 1

4
.

4. For the following statements give either a proof or a counterexample.

(a) For every sequence ak ∈ R there exists a ∈ R∪{∞,−∞} and a subsequence ank
with ank

→ a as k →∞.
Proof: Case 1: the sequence ak is unbounded. If it is not bounded above there exists a subsequence
ank
→∞. If it is not bounded below there exists a subsequence ank

→ −∞.
Case 2: The sequence ak is bounded. Now the Bolzano-Weierstrass theorem states that there exists a
subsequence which converges to a limit a ∈ R.

(b) If
∑∞

k=1 ak converges, then for any subsequence ank
the series

∑∞
k=1 ank

converges.
Counterexample:

∑∞
k=1(−1)k

1
k
converges (alternating series with ak → 0). However, for the subsequence

nk = 2k we get the series
∑∞

k=1 ank
=
∑∞

k=1
1
2k

= 1
2

∑∞
k=1

1
k
which diverges to ∞.

(c) If
∑∞

k=1 ak converges absolutely, then for any subsequence ank
the series

∑∞
k=1 ank

converges.
Proof: We have that

∑∞
k=1 |ak| =: S < ∞ converges. The sequence sk :=

∑k
j=1

∣∣anj

∣∣ is nondecreasing
and bounded from above by S, hence sk converges. This means that the series

∑∞
k=1 |ank

| is absolutely
convergent, hence it is convergent.


