Math 410: Solution of Exam 1

1. Let $A = \{\frac{p}{q} : p, q \in \mathbb{N} \text{ with } p < q\}$. Find inf A, sup A and cl(A) and justify your answers.

A is bounded from below by 0. A contains the sequence $\frac{1}{n}$ which converges to 0. Hence $0 = \inf A$. A is bounded from above by 1. A contains the sequence $\frac{n}{n-1}$ which converges to 1. Hence $1 = \sup A$. claim: cl(A) = [0, 1]. We already found sequences which converge to 0 and 1. Let $a \in (0, 1)$ and $k \in \mathbb{N}$. Then for x := ka there exists $n_k \in \mathbb{N}_0$ with $n_k < ka \le n_k + 1$, hence $a \in (\frac{n_k}{k}, \frac{n_k + 1}{n}]$. Hence the sequence $\frac{n_k}{k} \in A$ converges to a.

- **2.** Find $\liminf_{k\to\infty} a_k$ and $\limsup_{k\to\infty} a_k$ for the following sequences with $k\in\mathbb{N}$:
 - (a) $a_k = (-k)^k + k^k + \frac{1}{k}$ For even k we have $a_k = 2k^k + \frac{1}{k}$ which diverges to $+\infty$ as $k \to \infty$. For odd k we have $a_k = \frac{1}{k}$ which converges to 0 as $k \to \infty$. Hence $\liminf_{k \to \infty} a_k = 0$ and $\limsup_{k \to \infty} a_k = \infty$.
 - **(b)** $a_k = \left(-1 \frac{1}{k}\right)^k$

For even k we have $a_k = (1 + \frac{1}{k})^k$ which converges to e as $k \to \infty$. For odd k we have $a_k = -(1 + \frac{1}{k})^k$ which converges to -e as $k \to \infty$. Hence $\liminf_{k \to \infty} a_k = -e$ and

 $\lim \sup a_k = e.$

(c) $a_k = (k+1)^{1/3} - k^{1/3}$. Hint: Use $x^n - y^n = (x-y)(x^{n-1}y^0 + x^{n-2}y + \dots + x^0y^{n-1})$ with $x = (k+1)^{1/3}$, $y = k^{1/3}$

With n=3 we get $x-y=\frac{x^3-y^3}{x^2+xy+y^2}$ which gives

$$a_k = (k+1)^{1/3} - k^{1/3} = \frac{1}{(k+1)^{2/3} + (k+1)^{1/3}k^{1/3} + k^{2/3}}$$

Since the denominator tends to ∞ as $k \to \infty$ we have that $a_k \to 0$ as $k \to \infty$. Hence $\liminf a_k = 0$ $\lim\sup a_k=0.$

- **3.** Find out for which $x \in \mathbb{R}$ the series converges, and for which $x \in \mathbb{R}$ the series diverges. Explain your reasoning. Be careful to discuss all possible cases for x, including the "borderline" cases.
 - (a) $\sum_{k=1}^{\infty} \frac{x^k}{k^{1/2}2^k}$

We use the ratio test: $\frac{|a_{k+1}|}{|a_k|} = \left(\frac{k}{k+1}\right)^{1/2} \frac{|x|}{2} = \left(1 + \frac{1}{k}\right)^{1/2} \frac{|x|}{2} \to \frac{|x|}{2} =: \rho$. Now the ratio test gives:

- (i) The series converges for $\rho < 1 \iff |x| < 2$.
- (ii) The series diverges for $\rho > 1 \iff |x| > 2$.

It remains to investigate the borderline cases x = 2 and x = -2.

For x=2 we obtain the series $\sum_{k=1}^{\infty} \frac{1}{k^{1/2}}$ which diverges to ∞ . (Recall: $\sum_{k=1}^{\infty} k^p$ converges for p<-1and diverges for $p \geq -1$.)

For x=-2 we obtain the series $\sum_{k=1}^{\infty}(-1)^k\frac{1}{k^{1/2}}$ which is an alternating series with $a_k\to 0$, hence it

(b) $\sum_{k=1}^{\infty} (1+k^4)^x$.

 $\sum_{k=1}^{\infty} (1+k^4)^x. \quad \text{We compare } a_k := (1+k^4)^x > 0 \text{ with } b_k := k^{4x} > 0. \quad \text{Then } a_k = \left(\frac{1+k^4}{k^4}\right)^x = (k^{-4}+1)^x \to 1 \text{ as } k \to \infty. \quad \text{For } q \in (0,1) \text{ we have therefore } qb_k \le a_k \le q^{-1}b_k$ eventually. This gives:

- (i) For $4x < -1 \iff x < -\frac{1}{4}$ the series $\sum b_k$ converges, hence $\sum a_k$ converges (ii) For $4x \ge -1 \iff x \ge -\frac{1}{4}$ the series $\sum b_k$ diverges to ∞ , hence $\sum a_k$ diverges to ∞ .

(c)
$$\sum_{k=1}^{\infty} \frac{(2k)!}{k^{2k}} x^k$$

We use the ratio test: $\frac{|a_{k+1}|}{|a_k|} = \frac{(2k+2)(2k+1)}{k^2} |x| = \left(2 + \frac{2}{k}\right) \left(2 + \frac{1}{k}\right) |x| \to 4 |x| =: \rho \text{ as } k \to \infty.$ Now the ratio test gives:

(i) The series converges for $\rho < 1 \iff |x| < \frac{1}{4}$ (ii) The series diverges for $\rho > 1 \iff |x| > \frac{1}{4}$. It remains to investigate the borderline cases $x = \frac{1}{4}$ and $x = -\frac{1}{4}$. In this case we have $|a_k| = \frac{(2k)!}{k^{2k}4^k} = \frac{(2k)!}{(2k)^{2k}} = \prod_{j=1}^{2k} \frac{j}{k} \le \left(\frac{1}{2}\right)^k 1^k$ since the first k factors are bounded by $\frac{1}{2}$ and the remain-

ing factors are bounded by 1. Hence $\sum |a_k|$ can be bounded from above by a convergent geometric series. Therefore the series $\sum a_k$ converges absolutely for $|x| = \frac{1}{4}$.

- **4.** For the following statements give either a proof or a counterexample.
 - (a) For every sequence $a_k \in \mathbb{R}$ there exists $a \in \mathbb{R} \cup \{\infty, -\infty\}$ and a subsequence a_{n_k} with $a_{n_k} \to a$ as $k \to \infty$. Proof: Case 1: the sequence a_k is unbounded. If it is not bounded above there exists a subsequence $a_{n_k} \to \infty$. If it is not bounded below there exists a subsequence $a_{n_k} \to -\infty$. Case 2: The sequence a_k is bounded. Now the Bolzano-Weierstrass theorem states that there exists a subsequence which converges to a limit $a \in \mathbb{R}$.
 - (b) If $\sum_{k=1}^{\infty} a_k$ converges, then for any subsequence a_{n_k} the series $\sum_{k=1}^{\infty} a_{n_k}$ converges. Counterexample: $\sum_{k=1}^{\infty} (-1)^k \frac{1}{k}$ converges (alternating series with $a_k \to 0$). However, for the subsequence $n_k = 2k$ we get the series $\sum_{k=1}^{\infty} a_{n_k} = \sum_{k=1}^{\infty} \frac{1}{2k} = \frac{1}{2} \sum_{k=1}^{\infty} \frac{1}{k}$ which diverges to ∞ .
 - (c) If $\sum_{k=1}^{\infty} a_k$ converges absolutely, then for any subsequence a_{n_k} the series $\sum_{k=1}^{\infty} a_{n_k}$ converges. Proof: We have that $\sum_{k=1}^{\infty} |a_k| =: S < \infty$ converges. The sequence $s_k := \sum_{j=1}^{k} |a_{n_j}|$ is nondecreasing and bounded from above by S, hence s_k converges. This means that the series $\sum_{k=1}^{\infty} |a_{n_k}|$ is absolutely convergent, hence it is convergent.