Math 410: Solution of Exam 2

- **1.** Let $f(x) = e^{-2x}$. We want to approximate y := f(0.1).
 - (a) Find the Taylor polynomial $p_2(x) = f(a) + \dots + (\dots)(x-a)^2$ about the point a = 0. Find $\tilde{y} := p_2(0.1)$. Simplify your answers. $f(0) = 1, f'(x) = -2e^{-2x}, f'(0) = -2, f''(x) = 4e^{-2x}, f''(0) = 4,$ $p_2(x) = f(0) + f'(0)(x-0) + \frac{1}{2}f''(0)(x-0)^2 = \boxed{1-2x+2x^2}, \tilde{y} = p_2(0.1) = 1 - .2 + .02 = \boxed{.82}$
 - (b) Write down the Lagrange remainder term $y \tilde{y} = \cdots$. Find an upper bound $|y \tilde{y}| \leq \cdots$, give a number like e.g. $10^{-5}/3$. $y - \tilde{y} = R_2 = \frac{1}{3!} f'''(p) x^3$ with x = .1 and $p \in (0, .1)$. Here $f'''(p) = -8e^{-2x}$. Since $e^{-p} \leq 1$ we obtain $y - \tilde{y} = R_2 = \frac{1}{6} (-8)e^{-2p} (.1)^3$ and $|y - \tilde{y}| = |\frac{1}{6} (-8)e^{-2p} (.1)^3| = \frac{4}{3}e^{-2p} (.1)^3 \leq \frac{4}{3} \cdot 10^{-3}$.
- 2. Determine the following 1-sided limits for $x \to 0^-$: Specify (i) a number $L \in \mathbb{R}$, (ii) $+\infty$ or $-\infty$, (iii) none of the above. Justify your answers.
 - (a) $\lim_{x\to 0^-} \frac{e^{-x}-1}{x^2}$: Plugging in x = 0 gives $\frac{0}{0}$, L'Hospital gives $\lim_{x\to 0^-} \frac{-e^{-x}}{2x}$ which gives $+\infty$ (numerator $\rightarrow 1$, denominator $\rightarrow 0$ from below)
 - (b) $\lim_{x \to 0^-} \frac{e^{-x} 1 + x}{x^2}$: Plugging in x = 0 gives $\frac{0}{0}$, L'Hospital gives $\lim_{x \to 0^-} \frac{-e^{-x} + 1}{2x}$. Plugging in x = 0 gives $\frac{0}{0}$, using L'Hospital again gives $\lim_{x \to 0^-} \frac{e^{-x}}{2} = \boxed{\frac{1}{2}}$
- **3.** Let D = [0,3]. We have a **differentiable** function $f: D \to \mathbb{R}$ with the following function values: $\frac{x \quad 0 \quad 1 \quad 2 \quad 3}{f(x) \quad 1 \quad 2 \quad -1 \quad 1}$
 - (a) Show: there are two different points x ∈ D with f(x) = 0.
 f differentiable ⇒ f continuous. Intermediate value theorem: (i) exists p₁ ∈ (1,2) with f(p₁) = 0, (ii) exists p₂ ∈ (2,3) with f(p₂) = 0.
 - (b) Show: there exists $x \in D$ with f'(x) > 1, there exists $x \in D$ with f'(x) < -1. Show: there exist two *different* points $x \in D$ with f'(x) = 0.

Mean value theorem: $\exists s_1 \in (1,2)$ with $f'(s_1) = \frac{f(2) - f(1)}{2 - 1} = \frac{-3}{1} < -1$, $\exists s_2 \in (2,3)$ with $f'(s_2) = \frac{f(3) - f(2)}{3 - 2} = \frac{2}{1} > 1$, $\exists s_0 \in (0,1)$ with $f'(s_0) = \frac{2-1}{1-0} > 0$ Derivative intermediate value theorem: $\exists q_1 \in (s_0, s_1)$ with $f'(q_1) = 0$, $\exists q_2 \in (s_1, s_2)$ with $f'(q_2) = 0$

- (c) Assume f is twice differentiable on D. Show: there exists $x \in D$ with f''(x) = 0. Use (b) and mean value theorem for f': $\exists p \in (q_1, q_2)$ with $f''(p) = \frac{f'(q_2) - f'(q_1)}{q_2 - q_1} = 0$ (or Rolle's theorem)
- **4.** Are the following functions $f: D \to \mathbb{R}$ (i) Cauchy continuous, (ii) uniformly continuous? Use the results from class to justify your answers.
 - (a) $D = (0,1), f(x) = x^{-2} + x$: For Cauchy sequence $x_n = \frac{1}{n}$ we have $f(x_n) = n^2 + n \to \infty$ as $n \to \infty$, i.e., $f(x_n)$ is NOT a Cauchy sequence. Hence f is NOT Cauchy continuous on D. Therefore f is NOT uniformly continuous on D (since unif. contin. \implies Cauchy contin.).
 - (b) $D = (1, \infty), f(x) = x^{-2} + x$: $f'(x) = -2x^{-3} + 1$ is bounded on $D = (1, \infty)$, hence f is Lipschitz on D. Therefore f is uniformly continuous on D, and hence also Cauchy continuous on D.