Math 410: Solution Final Exam Spring 2018

1. (20 pts) Find out for which x € R the series converges, and for which x € R the series diverges. Explain your
reasoning. Be careful to discuss all possible cases for x, including the “borderline” cases.

(a)

(b)
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Ratio test: 2 lim il — 12 . |x| <4 = convergence, |z| > 4 = divergence
b e | = 3 o gence, | :
borderline cases: for = 4 we have Y7 | + which diverges, for = —4 we have Y ;7 (_]i)
(alternating series with ay — 0).
3
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Use comparison: «ay, 1= 2+k3 behaves like 3, := ¢ for large k, a’“ —lask — o

Hence for a; := (2_]&3) and b, = = we have‘;k = (E) —lask — o0
(e}

Two-way comparison test for series with nonnegative terms: Z = converges for x > 1, diverges for z < 1,
k=1

therefore the same holds for » ;- | a.

2. (20 pts) Prove the following statements:

(a)

(b)

Let x, be a bounded sequence which is not convergent. Then there exist two subsequences z,, and x,,,
which converge to different limits.

Sequence zj, is bounded: by Bolzano-Weierstrass there exists subsequence z,, with z,, — a as k — oo.
The sequence x does not converge to a. Hence there exists € > 0 so that we have for infinitely many & that
|z, — a| > e. The sequence of these infinitely many z;, is bounded, hence it has a convergent subsequence
Ty, With z,,,, — b as k — oo, and we have |b — a| > €.

f: [a,b] = R is differentiable. f is neither increasing nor decreasing on [a, b]. Then there exists = € (a, b)
with f'(z) =0

Method 1: Use Strict Monotonicity Theorem: For f differentiable on [a,b] with f'(x) # 0 in (a,b) we
have that either f is increasing on [a, b], or that f is decreasing on [a, b]. Use contraposition.

Method 2: f is not increasing on [a,b]. Hence there exists x,y € [a,b] with z < y and f(z) > f(y).
By the mean value theorem there exists ¢ € (z,y) with f'(t) = % < 0. In the same way: f is not
decreasing on [a, b] implies that there exists s € (a,b) with f/(s) < 0. If s =¢ then f'(s) =0. If s #t we
have by the derivative intermediate value theorem that there exists p between s and ¢ with f’(p) = 0.

3. (20 pts) Consider f(z) = Inzx for > 0.

(a)

(b)

Find the Taylor polynomial p3(z) = -+ + ---(z — a)® about @ = 1. Write down the remainder term
R3(x) = f(z) — ps(x) in Lagrange form and in Cauchy form.

fll@) =a7t, f"(x) = —a~ f”’( )= 2273 fW(2) = —627, fHD(2) = (~1)Fklz™"!

pa(e) = F1) + P - 1) + ﬂ%ﬂw—n/w—o+1<x—n—5@—1>+ax—n3

Lagrange remainder term: Rg( ) fO () (x—1)4/4! = Yz —1)*/24 = —1t*(z — 1)* with ¢ between
1 and x

Cauchy remainder term: Rs(z) = [ f{ =[] - t)3dt

Write down the Lagrange remamder term Rn( ) Find an upper bound ’Rn(%)| < ... . What happens

with the upper bound for n — oo?
Ry(x) = fOO () (z — 1)" ! /(n+ 1)l = (=1)"nlt™" (& — )" /(n+ 1)l = (=1)"t "z = )" /(n + 1)

upper bound: |R,(2)| < (3)™71(5)"!/(n+1) = 25 (3)™™" which goes to zero as n — oo.

4. (10 pts) Assume f: [a,b] — R satisfies for all z,y € [a,b] that |f(z) — f(y)| < L|z —y|. Let I := fab f(z)dx



(a)

(b)

Show that I = f(p)(b— a) for some p € (a,b).

f is Lipschitz, hence f is continuous. Method 1: use the integral mean value theorem with g(z) = 1
to obtain the result. Method 2: Since f is continuous on [a,b] it has a maximum at T € [a,b] and a
minimum at z € [a,b]. Then (b—a)f(z) < I < (b—a)f(T), and by the intermediate value theorem there
exists p € (a,b) with f(p) = ;.

Let Q := (b — a)f(“?) (“midpoint rule”). Show that |Q — I| < L(b— a)?/2.

Method 1: Using (a) we have |Q — I| = |f(“22) — f(p)| (b — a). Since %% is the midpoint of [a,b] and
p € (a,b) we have |p — ‘IT“’| < bza. Using the LlpSChltZ property we get |Q — I] < L@(b —a).

Method 2: We have I — @ = f; [f(x) — f(“TJ“b)} dz, this gives the sharper result

b b (b—a)/2 2 (b—a)/2 (b— a)2
\Q—Ilé/ dxg/L dx:L-z/ tdt:L-2-[—] =L
a a 0 2 0 4

a+b a+b

xr —

fl@) = f(——)

5. (30 pts) The function f: [0,4] — R satisfies for all z,y € [0,4] that |f(z) — f(y)| < 5|z —y|.

(a)
(b)

Show that f is uniformly continuous on [0, 4].
For a given ¢ > 0 define § := ¢/5, then |z — y| < ¢ implies |f(x) — f(y)| <5z —y| <5 £ =

We are given € > 0. Find 0 > 0 (specify e.g. ¢ := ¢/17) so that for a partition P with |P| < § we have
U(f,P)— L(f,P) <e.

Hint: Write U(f, P) — L(f, P) = Z] LG )@y — o).

The partition P uses the points 0 = zg < x1 < -+ < x,, = 4. The function f is continuous by (a). Hence it
has on each subinterval [xj,l, xj] a maximum at m; and a minimum at m;, and |mj — mj‘ <zj—xj-1 <0

n

U(f, P)—L(f,P) = > _ (f(m;) - f(m,)) (%—fb’jfl)ﬁzfﬂmj—mﬂ Tj—Lj1 <55Z — xj-1) = 200

j=1

Hence choosing ¢ := €/20 implies U(f, P) — L(f, P) <

We want to find an approximation @) for [ := fo r)dz with |Q — I| < 1072. How can we do this?

Hint: Use a Riemann sum, specify the quadrature pomts you want to use. Then prove that |Q — I| < 1072
Use 5(b). For a partition P and any choice of points s; € [x;_1,x;] we have U(f, P) > R(f, P,S) > L(f, P)
and also U(f,P) > I > L(f,P). Therefore U(f, P) — L(f, P) < e implies | — R(f, P,S)| < e. Here
e = 107%is given. By (b): For a partition P with |P| < 1072/20 = 555 we have [ — R(f, P, S)| < e =102
Therefore we divide the interval [0, 4] into 2000 subintervals of equal size: z; = 5/500, j = 0,...,2000.
We can use any s; € [r;_1,z;], e.g., the right endpoint s; = z;. This gives the approximation () =

500 2500 f(5/500).

Alternatlvely, one can also use 4(b).



