Math 410: Solution Final Exam Spring 2018

1. (20 pts) Find out for which $x \in \mathbb{R}$ the series converges, and for which $x \in \mathbb{R}$ the series diverges. Explain your reasoning. Be careful to discuss all possible cases for x, including the "borderline" cases.

(a)
$$\sum_{k=1}^{\infty} \frac{x^k}{k4^k}$$

Ratio test: $\frac{a_{k+1}}{a_k} = \frac{k}{k+1} \cdot \frac{x}{4}$, $\lim_{k \to \infty} \left| \frac{a_{k+1}}{a_k} \right| = \left| \frac{x}{4} \right|$, hence: $|x| < 4 \implies$ convergence, $|x| > 4 \implies$ divergence borderline cases: for x = 4 we have $\sum_{k=1}^{\infty} \frac{1}{k}$ which diverges, for x = -4 we have $\sum_{k=1}^{\infty} \frac{(-1)^k}{k}$ which converges (alternating series with $a_k \to 0$).

(b)
$$\sum_{k=1}^{\infty} \left(\frac{k^2}{2+k^3}\right)^x$$

Use comparison: $\alpha_k := \frac{k^2}{2+k^3}$ behaves like $\beta_k := \frac{1}{k}$ for large $k, \frac{\alpha_k}{\beta_k} \to 1$ as $k \to \infty$ Hence for $a_k := \left(\frac{k^2}{2+k^3}\right)^x$ and $b_k = \frac{1}{k^x}$ we have $\frac{a_k}{b_k} = \left(\frac{\alpha_k}{\beta_k}\right) \to 1$ as $k \to \infty$

Two-way comparison test for series with nonnegative terms: $\sum_{k=1}^{\infty} \frac{1}{k^x}$ converges for x > 1, diverges for $x \le 1$, therefore the same holds for $\sum_{k=1}^{\infty} a_k$.

- **2.** (20 pts) Prove the following statements:
 - (a) Let x_k be a bounded sequence which is not convergent. Then there exist two subsequences x_{n_k} and x_{m_k} which converge to different limits.

Sequence x_k is bounded: by Bolzano-Weierstrass there exists subsequence x_{n_k} with $x_{n_k} \to a$ as $k \to \infty$. The sequence x_k does not converge to a. Hence there exists $\epsilon > 0$ so that we have for infinitely many k that $|x_k - a| \ge \epsilon$. The sequence of these infinitely many x_k is bounded, hence it has a convergent subsequence x_{m_k} with $x_{m_k} \to b$ as $k \to \infty$, and we have $|b - a| \ge \epsilon$.

(b) $f: [a, b] \to \mathbb{R}$ is differentiable. f is neither increasing nor decreasing on [a, b]. Then there exists $x \in (a, b)$ with f'(x) = 0.

Method 1: Use Strict Monotonicity Theorem: For f differentiable on [a, b] with $f'(x) \neq 0$ in (a, b) we have that either f is increasing on [a, b], or that f is decreasing on [a, b]. Use contraposition.

Method 2: f is not increasing on [a, b]. Hence there exists $x, y \in [a, b]$ with x < y and $f(x) \ge f(y)$. By the mean value theorem there exists $t \in (x, y)$ with $f'(t) = \frac{f(y) - f(x)}{y - x} \le 0$. In the same way: f is not decreasing on [a, b] implies that there exists $s \in (a, b)$ with $f'(s) \le 0$. If s = t then f'(s) = 0. If $s \neq t$ we have by the derivative intermediate value theorem that there exists p between s and t with f'(p) = 0.

- **3.** (20 pts) Consider $f(x) = \ln x$ for x > 0.
 - (a) Find the Taylor polynomial $p_3(x) = \cdots + \cdots (x a)^3$ about a = 1. Write down the remainder term $R_3(x) = f(x) p_3(x)$ in Lagrange form and in Cauchy form.

 $f'(x) = x^{-1}, f''(x) = -x^{-2}, f'''(x) = 2x^{-3}, f^{(4)}(x) = -6x^{-4}, f^{(k+1)}(x) = (-1)^k k! x^{-k-1}$ $p_3(x) = f(1) + f'(1)(x-1) + \dots + f'''(1)(x-1)^3/3! = 0 + 1 \cdot (x-1) - \frac{1}{2}(x-1)^2 + \frac{1}{3}(x-1)^3$ Lagrange remainder term: $R_3(x) = f^{(4)}(t)(x-1)^4/4! = -6t^{-4}(x-1)^4/24 = -\frac{1}{4}t^{-4}(x-1)^4$ with t between 1 and x
Consider provide terms $P_1(x) = \int_0^x f^{(4)}(t) \frac{(x-t)^3}{2t} dt = \int_0^x t^{-4}(x-1)^3 dt$

Cauchy remainder term: $R_3(x) = \int_1^x f^{(4)}(t) \frac{(x-t)^3}{3!} dt = \int_1^x -t^{-4} (x-t)^3 dt$

(b) Write down the Lagrange remainder term $R_n(x)$. Find an upper bound $|R_n(\frac{3}{4})| \leq \cdots$. What happens with the upper bound for $n \to \infty$?

 $\begin{aligned} R_n(x) &= \hat{f^{(n+1)}}(t)(x-1)^{n+1}/(n+1)! = (-1)^n n! t^{-n-1}(x-1)^{n+1}/(n+1)! = (-1)^n t^{-n-1}(x-1)^{n+1}/(n+1) \\ \text{upper bound: } \left| R_n(\frac{3}{4}) \right| &\leq (\frac{3}{4})^{-n-1}(\frac{1}{4})^{n+1}/(n+1) = \frac{1}{n+1}(\frac{1}{3})^{n+1} \text{ which goes to zero as } n \to \infty. \end{aligned}$

4. (10 pts) Assume $f: [a, b] \to \mathbb{R}$ satisfies for all $x, y \in [a, b]$ that $|f(x) - f(y)| \le L |x - y|$. Let $I := \int_a^b f(x) dx$

- (a) Show that I = f(p)(b a) for some p ∈ (a, b).
 f is Lipschitz, hence f is continuous. Method 1: use the integral mean value theorem with g(x) = 1 to obtain the result. Method 2: Since f is continuous on [a, b] it has a maximum at x̄ ∈ [a, b] and a minimum at x̄ ∈ [a, b]. Then (b a)f(x̄) ≤ I ≤ (b a)f(x̄), and by the intermediate value theorem there exists p ∈ (a, b) with f(p) = ^I/_{b-a}.
- (b) Let $Q := (b-a)f(\frac{a+b}{2})$ ("midpoint rule"). Show that $|Q I| \le L(b-a)^2/2$. Method 1: Using (a) we have $|Q - I| = |f(\frac{a+b}{x}) - f(p)|(b-a)$. Since $\frac{a+b}{2}$ is the midpoint of [a, b] and $p \in (a, b)$ we have $|p - \frac{a+b}{2}| < \frac{b-a}{2}$. Using the Lipschitz property we get $|Q - I| \le L\frac{(b-a)}{2}(b-a)$. Method 2: We have $I - Q = \int_a^b [f(x) - f(\frac{a+b}{2})] dx$, this gives the sharper result

$$|Q - I| \le \int_{a}^{b} \left| f(x) - f(\frac{a+b}{2}) \right| dx \le \int_{a}^{b} L \left| x - \frac{a+b}{2} \right| dx = L \cdot 2 \int_{0}^{(b-a)/2} t \, dt = L \cdot 2 \cdot \left[\frac{t^{2}}{2} \right]_{0}^{(b-a)/2} = L \frac{(b-a)^{2}}{4} + L \cdot 2 \cdot \left[\frac{t^{2}}{2} \right]_{0}^{(b-a)/2} = L \frac{(b-a)^{2}}{4} + L \cdot 2 \cdot \left[\frac{t^{2}}{2} \right]_{0}^{(b-a)/2} = L \frac{(b-a)^{2}}{4} + L \cdot 2 \cdot \left[\frac{t^{2}}{2} \right]_{0}^{(b-a)/2} = L \frac{(b-a)^{2}}{4} + L \cdot 2 \cdot \left[\frac{t^{2}}{2} \right]_{0}^{(b-a)/2} = L \frac{(b-a)^{2}}{4} + L \cdot 2 \cdot \left[\frac{t^{2}}{2} \right]_{0}^{(b-a)/2} = L \frac{(b-a)^{2}}{4} + L \cdot 2 \cdot \left[\frac{t^{2}}{2} \right]_{0}^{(b-a)/2} = L \frac{(b-a)^{2}}{4} + L \cdot 2 \cdot \left[\frac{t^{2}}{2} \right]_{0}^{(b-a)/2} = L \frac{(b-a)^{2}}{4} + L \cdot 2 \cdot \left[\frac{t^{2}}{2} \right]_{0}^{(b-a)/2} = L \frac{(b-a)^{2}}{4} + L \cdot 2 \cdot \left[\frac{t^{2}}{2} \right]_{0}^{(b-a)/2} = L \frac{(b-a)^{2}}{4} + L \cdot 2 \cdot \left[\frac{t^{2}}{2} \right]_{0}^{(b-a)/2} = L \frac{(b-a)^{2}}{4} + L \cdot 2 \cdot \left[\frac{t^{2}}{2} \right]_{0}^{(b-a)/2} = L \frac{(b-a)^{2}}{4} + L \cdot 2 \cdot \left[\frac{t^{2}}{2} \right]_{0}^{(b-a)/2} = L \frac{(b-a)^{2}}{4} + L \cdot 2 \cdot \left[\frac{t^{2}}{2} \right]_{0}^{(b-a)/2} = L \frac{(b-a)^{2}}{4} + L \cdot 2 \cdot \left[\frac{t^{2}}{2} \right]_{0}^{(b-a)/2} = L \frac{(b-a)^{2}}{4} + L \cdot 2 \cdot \left[\frac{t^{2}}{2} \right]_{0}^{(b-a)/2} = L \frac{(b-a)^{2}}{4} + L \cdot 2 \cdot \left[\frac{t^{2}}{2} \right]_{0}^{(b-a)/2} = L \frac{(b-a)^{2}}{4} + L \cdot 2 \cdot \left[\frac{t^{2}}{2} \right]_{0}^{(b-a)/2} = L \frac{(b-a)^{2}}{4} + L \cdot 2 \cdot \left[\frac{t^{2}}{2} \right]_{0}^{(b-a)/2} = L \frac{(b-a)^{2}}{4} + L \cdot 2 \cdot \left[\frac{t^{2}}{2} \right]_{0}^{(b-a)/2} = L \frac{(b-a)^{2}}{4} + L \cdot 2 \cdot \left[\frac{t^{2}}{2} \right]_{0}^{(b-a)/2} = L \frac{(b-a)^{2}}{4} + L \cdot 2 \cdot \left[\frac{t^{2}}{2} \right]_{0}^{(b-a)/2} = L \frac{(b-a)^{2}}{4} + L \cdot 2 \cdot \left[\frac{t^{2}}{2} \right]_{0}^{(b-a)/2} = L \frac{(b-a)^{2}}{4} + L \cdot 2 \cdot \left[\frac{t^{2}}{2} \right]_{0}^{(b-a)/2} = L \frac{(b-a)^{2}}{4} + L \cdot 2 \cdot \left[\frac{t^{2}}{2} \right]_{0}^{(b-a)/2} = L \frac{(b-a)^{2}}{4} + L \cdot 2 \cdot \left[\frac{t^{2}}{2} \right]_{0}^{(b-a)/2} = L \frac{(b-a)^{2}}{4} + L \cdot 2 \cdot \left[\frac{t^{2}}{2} \right]_{0}^{(b-a)/2} = L \frac{(b-a)^{2}}{4} + L \cdot 2 \cdot \left[\frac{t^{2}}{2} \right]_{0}^{(b-a)/2} = L \frac{(b-a)^{2}}{4} + L \cdot 2 \cdot \left[\frac{t^{2}}{2} \right]_{0}^{(b-a)/2} = L \frac{(b-a)^{2}}{4} + L \cdot 2 \cdot \left[\frac{t^{2}}{2} \right]_{0}^{(b-a)/2} = L \frac{(b-a)^{2}}{4} + L \cdot 2 \cdot \left[\frac{t^{2}}{2} \right]_{0}^{(b-a)/2} = L \frac{(b-a)^{2}}{4} + L \cdot$$

5. (30 pts) The function $f: [0,4] \to \mathbb{R}$ satisfies for all $x, y \in [0,4]$ that $|f(x) - f(y)| \le 5 |x - y|$.

- (a) Show that f is uniformly continuous on [0, 4]. For a given $\epsilon > 0$ define $\delta := \epsilon/5$, then $|x - y| < \delta$ implies $|f(x) - f(y)| \le 5 |x - y| < 5 \cdot \frac{\epsilon}{5} = \epsilon$.
- (b) We are given $\epsilon > 0$. Find $\delta > 0$ (specify e.g. $\delta := \epsilon/17$) so that for a partition P with $|P| < \delta$ we have $U(f, P) L(f, P) < \epsilon$.

Hint: Write
$$U(f, P) - L(f, P) = \sum_{j=1}^{n} (\cdots) (x_j - x_{j-1}).$$

The partition P uses the points $0 = x_0 < x_1 < \cdots < x_n = 4$. The function f is continuous by (a). Hence it has on each subinterval $[x_{j-1}, x_j]$ a maximum at \overline{m}_j and a minimum at \underline{m}_j , and $|\overline{m}_j - \underline{m}_j| \leq x_j - x_{j-1} \leq \delta$

$$U(f,P) - L(f,P) = \sum_{j=1}^{n} \left(f(\overline{m}_{j}) - f(\underline{m}_{j}) \right) (x_{j} - x_{j-1}) \le \sum_{j=1}^{n} 5 \left| \overline{m}_{j} - \underline{m}_{j} \right| (x_{j} - x_{j-1}) \le 5\delta \underbrace{\sum_{j=1}^{n} (x_{j} - x_{j-1})}_{A} = 20\delta$$

Hence choosing $\delta := \epsilon/20$ implies $U(f, P) - L(f, P) < \epsilon$

(c) We want to find an approximation Q for $I := \int_0^4 f(x) dx$ with $|Q - I| \le 10^{-2}$. How can we do this? *Hint:* Use a Riemann sum, specify the quadrature points you want to use. Then prove that $|Q - I| \le 10^{-2}$. Use 5(b). For a partition P and any choice of points $s_j \in [x_{j-1}, x_j]$ we have $U(f, P) \ge R(f, P, S) \ge L(f, P)$ and also $U(f, P) \ge I \ge L(f, P)$. Therefore $U(f, P) - L(f, P) \le \epsilon$ implies $|I - R(f, P, S)| \le \epsilon$. Here $\epsilon = 10^{-2}$ is given. By (b): For a partition P with $|P| \le 10^{-2}/20 = \frac{1}{2000}$ we have $|I - R(f, P, S)| \le \epsilon = 10^{-2}$. Therefore we divide the interval [0, 4] into 2000 subintervals of equal size: $x_j = j/500, j = 0, \ldots, 2000$. We can use any $s_j \in [x_{j-1}, x_j]$, e.g., the right endpoint $s_j = x_j$. This gives the approximation $Q = \frac{1}{500} \sum_{j=1}^{500} f(j/500)$.

Alternatively, one can also use 4(b).