
Math 410: Solution Final Exam Spring 2018

1. (20 pts) Find out for which x ∈ R the series converges, and for which x ∈ R the series diverges. Explain your
reasoning. Be careful to discuss all possible cases for x, including the “borderline” cases.

(a)
∞∑
k=1

xk

k4k

Ratio test:
ak+1

ak
=

k

k + 1
· x
4
, limk→∞

∣∣∣ak+1

ak

∣∣∣ = ∣∣x4 ∣∣, hence: |x| < 4 =⇒ convergence, |x| > 4 =⇒ divergence

borderline cases: for x = 4 we have
∑∞

k=1
1
k
which diverges, for x = −4 we have

∑∞
k=1

(−1)k
k

which converges
(alternating series with ak → 0).

(b)
∞∑
k=1

(
k2

2 + k3

)x
Use comparison: αk := k2

2+k3
behaves like βk := 1

k
for large k, αk

βk
→ 1 as k →∞

Hence for ak :=
(

k2

2+k3

)x
and bk = 1

kx
we haveak

bk
=
(
αk

βk

)
→ 1 as k →∞

Two-way comparison test for series with nonnegative terms:
∞∑
k=1

1

kx
converges for x > 1, diverges for x ≤ 1,

therefore the same holds for
∑∞

k=1 ak.

2. (20 pts) Prove the following statements:

(a) Let xk be a bounded sequence which is not convergent. Then there exist two subsequences xnk
and xmk

which converge to different limits.
Sequence xk is bounded: by Bolzano-Weierstrass there exists subsequence xnk

with xnk
→ a as k → ∞.

The sequence xk does not converge to a. Hence there exists ε > 0 so that we have for infinitely many k that
|xk − a| ≥ ε. The sequence of these infinitely many xk is bounded, hence it has a convergent subsequence
xmk

with xmk
→ b as k →∞, and we have |b− a| ≥ ε.

(b) f : [a, b]→ R is differentiable. f is neither increasing nor decreasing on [a, b]. Then there exists x ∈ (a, b)
with f ′(x) = 0.
Method 1: Use Strict Monotonicity Theorem: For f differentiable on [a, b] with f ′(x) 6= 0 in (a, b) we
have that either f is increasing on [a, b], or that f is decreasing on [a, b]. Use contraposition.
Method 2: f is not increasing on [a, b]. Hence there exists x, y ∈ [a, b] with x < y and f(x) ≥ f(y).
By the mean value theorem there exists t ∈ (x, y) with f ′(t) = f(y)−f(x)

y−x ≤ 0. In the same way: f is not
decreasing on [a, b] implies that there exists s ∈ (a, b) with f ′(s) ≤ 0. If s = t then f ′(s) = 0. If s 6= t we
have by the derivative intermediate value theorem that there exists p between s and t with f ′(p) = 0.

3. (20 pts) Consider f(x) = ln x for x > 0.

(a) Find the Taylor polynomial p3(x) = · · · + · · · (x − a)3 about a = 1. Write down the remainder term
R3(x) = f(x)− p3(x) in Lagrange form and in Cauchy form.
f ′(x) = x−1, f ′′(x) = −x−2, f ′′′(x) = 2x−3, f (4)(x) = −6x−4, f (k+1)(x) = (−1)kk!x−k−1
p3(x) = f(1) + f ′(1)(x− 1) + · · ·+ f ′′′(1)(x− 1)3/3! = 0 + 1 · (x− 1)− 1

2
(x− 1)2 + 1

3
(x− 1)3

Lagrange remainder term: R3(x) = f (4)(t)(x− 1)4/4! = −6t−4(x− 1)4/24 = −1
4
t−4(x− 1)4 with t between

1 and x
Cauchy remainder term: R3(x) =

´ x
1
f (4)(t) (x−t)

3

3!
dt =

´ x
1
−t−4(x− t)3dt

(b) Write down the Lagrange remainder term Rn(x). Find an upper bound
∣∣Rn(

3
4
)
∣∣ ≤ · · · . What happens

with the upper bound for n→∞?
Rn(x) = f (n+1)(t)(x− 1)n+1/(n+ 1)! = (−1)nn!t−n−1(x− 1)n+1/(n+ 1)! = (−1)nt−n−1(x− 1)n+1/(n+ 1)
upper bound:

∣∣Rn(
3
4
)
∣∣ ≤ (3

4
)−n−1(1

4
)n+1/(n+ 1) = 1

n+1
(1
3
)n+1 which goes to zero as n→∞.

4. (10 pts) Assume f : [a, b]→ R satisfies for all x, y ∈ [a, b] that |f(x)− f(y)| ≤ L |x− y|. Let I :=
´ b
a
f(x)dx



(a) Show that I = f(p)(b− a) for some p ∈ (a, b).
f is Lipschitz, hence f is continuous. Method 1: use the integral mean value theorem with g(x) = 1
to obtain the result. Method 2: Since f is continuous on [a, b] it has a maximum at x ∈ [a, b] and a
minimum at x ∈ [a, b]. Then (b− a)f(x) ≤ I ≤ (b− a)f(x), and by the intermediate value theorem there
exists p ∈ (a, b) with f(p) = I

b−a .

(b) Let Q := (b− a)f(a+b
2
) (“midpoint rule”). Show that |Q− I| ≤ L(b− a)2/2.

Method 1: Using (a) we have |Q− I| =
∣∣f(a+b

x
)− f(p)

∣∣ (b − a). Since a+b
2

is the midpoint of [a, b] and
p ∈ (a, b) we have

∣∣p− a+b
2

∣∣ < b−a
2
. Using the Lipschitz property we get |Q− I| ≤ L (b−a)

2
(b− a).

Method 2: We have I −Q =
´ b
a

[
f(x)− f(a+b

2
)
]
dx, this gives the sharper result

|Q− I| ≤
ˆ b

a

∣∣∣∣f(x)− f(a+ b

2
)

∣∣∣∣ dx ≤ ˆ b

a

L

∣∣∣∣x− a+ b

2

∣∣∣∣ dx = L·2
ˆ (b−a)/2

0

t dt = L·2·
[
t2

2

](b−a)/2
0

= L
(b− a)2

4

5. (30 pts) The function f : [0, 4]→ R satisfies for all x, y ∈ [0, 4] that |f(x)− f(y)| ≤ 5 |x− y|.

(a) Show that f is uniformly continuous on [0, 4].
For a given ε > 0 define δ := ε/5, then |x− y| < δ implies |f(x)− f(y)| ≤ 5 |x− y| < 5 · ε

5
= ε.

(b) We are given ε > 0. Find δ > 0 (specify e.g. δ := ε/17) so that for a partition P with |P | < δ we have
U(f, P )− L(f, P ) < ε.
Hint: Write U(f, P )− L(f, P ) =

∑n
j=1(· · · )(xj − xj−1).

The partition P uses the points 0 = x0 < x1 < · · · < xn = 4. The function f is continuous by (a). Hence it
has on each subinterval [xj−1, xj] a maximum at mj and a minimum at mj, and

∣∣mj −mj

∣∣ ≤ xj−xj−1 ≤ δ

U(f, P )−L(f, P ) =
n∑
j=1

(
f(mj)− f(mj)

)
(xj−xj−1) ≤

n∑
j=1

5
∣∣mj −mj

∣∣ (xj−xj−1) ≤ 5δ
n∑
j=1

(xj − xj−1)︸ ︷︷ ︸
4

= 20δ

Hence choosing δ := ε/20 implies U(f, P )− L(f, P ) < ε

(c) We want to find an approximation Q for I :=
´ 4

0
f(x)dx with |Q− I| ≤ 10−2. How can we do this?

Hint: Use a Riemann sum, specify the quadrature points you want to use. Then prove that |Q− I| ≤ 10−2.
Use 5(b). For a partition P and any choice of points sj ∈ [xj−1, xj] we have U(f, P ) ≥ R(f, P, S) ≥ L(f, P )
and also U(f, P ) ≥ I ≥ L(f, P ). Therefore U(f, P ) − L(f, P ) ≤ ε implies |I −R(f, P, S)| ≤ ε. Here
ε = 10−2 is given. By (b): For a partition P with |P | ≤ 10−2/20 = 1

2000
we have |I −R(f, P, S)| ≤ ε = 10−2.

Therefore we divide the interval [0, 4] into 2000 subintervals of equal size: xj = j/500, j = 0, . . . , 2000.
We can use any sj ∈ [xj−1, xj], e.g., the right endpoint sj = xj. This gives the approximation Q =
1

500

∑500
j=1 f(j/500).

Alternatively, one can also use 4(b).


