Defining the square root $b^{1/2}$ of a positive number b

For an ordered field we have (Proposition 1.10(b) in the notes)

$$x > 0 \text{ and } y < z \Longrightarrow xy < xz \tag{1}$$

Proposition 1. Let $y, z \in \mathbb{R}_+$. Then (i) y < z implies $y^2 < z^2$ (ii) $y \le z$ implies $y^2 \le z^2$ (iii) $y^2 > z^2$ implies y > z.

Proof. For (i) we get with (1) $y \cdot y < y \cdot z < z \cdot z$. Including the equality case gives (ii). Statement (iii) is the same as (ii) (contraposition).

Proposition 2. Let $b \in \mathbb{R}_+$. (*i*) For $p \in \mathbb{R}_+$ with $p^2 > b$ there exists q < p with $q^2 > b$. (*ii*) For $\tilde{p} \in \mathbb{R}_+$ with $\tilde{p}^2 < b$ there exists $\tilde{q} > \tilde{p}$ with $\tilde{q}^2 < b$.

Proof. (i): Let $f(x) := x^2 - b$ and the tangent line $g(x) := f(p) + f'(p)(x-p) = p^2 - b + 2p(x-b)$. Define q such that g(q) = 0, i.e.,

$$q := p - \frac{p^2 - b}{2p}$$

Since $p^2 > b$ we have q < p. We need to show $q^2 > b$, i.e., f(q) > 0 [see e.g. page 7 in the notes for the proof of this]. (ii): Let $p := b/\tilde{p}$. Then $p^2 = b^2/\tilde{p}^2 > b^2/b = b$. From (i) we obtain q < p with $q^2 > b$. Then $\tilde{q} := b/q > b/p = \tilde{p}$ and $\tilde{q}^2 = b^2/q^2 < b^2/b = b$.

Proposition 3. For $b \in \mathbb{R}_+$ there exists a unique $a \in \mathbb{R}_+$ with $a^2 = b$.

Proof. Consider the set $A := \{x \in \mathbb{R}_+ : x^2 < b\}$.

The set *A* is nonempty: We have s := b/(b+1) < 1, hence $s^2 < s$. We also have s < b, hence $s^2 < s < b$, i.e., $s \in A$. The set *A* is bounded from above: We have t := b+1 > 1, hence $t^2 > t > b$. Let $x \in A$, then $x^2 < b < t^2$ which implies x < t by Prop. 1(iii). Therefore *t* is an upper bound for the set *A*.

By the least upper bound property the set A has a least upper bound

$$a := \sup A \tag{2}$$

We now show that $a^2 = b$ using trichotomy:

Assume $a^2 < b$ holds. Then by Prop. 2(ii) there exists $\tilde{q} > a$ with $\tilde{q}^2 < b$, i.e., $\tilde{q} \in A$. Then *a* is not an upper bound of *A*, contradicting (2).

Assume $a^2 > b$ holds. Then by Prop. 2(i) there exists q < a with $q^2 > b$. Let $x \in A$, then $x^2 < b < q^2$ which implies x < q by Prop. 1(iii). Therefore q is an upper bound for the set A. But q < a contradicts that a is the least upper bound. Proof of uniqueness: This follows from Prop.1 (i).

Note that $a^2 = 0$ implies a = 0. Hence: For $b \in \mathbb{R}$ with $b \ge 0$ there exists a unique $a \in \mathbb{R}$, $a \ge 0$ such that $a^2 = b$. We use the notation $b^{1/2}$ for this number a.