
Practice problems: Solutions

1. Approximate y = (3.5)1/2 using the Taylor polynomial p2(x). Give an upper bound |y − p2(x)| ≤ · · · .

For f(x) = x1/2 we use the Taylor polynomial about x0 = 4: We have f(x0) = 2, f ′(x0) = 1
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2. We use the following Matlab command: y = 1000.2 - 1000.1

Give an upper bound for the relative error of the computed result
ŷ1 := fl(1000.2) , ŷ2 := fl(1000.1) , ỹ := ŷ1 − ŷ2 , ŷ := fl(ỹ) .

Let εŷ1
= ŷ1−y1

y1
etc. Then |εŷ1

| ≤ εM , |εŷ2
| ≤ εM , |εỹ| ≤ |y1|
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| ≤ 20003εM ,

|εŷ| ≤ |εỹ|+ εM ≤ 20004εM ≈ 2 · 10−12

3. We want to compute y = e.001 − 1 and use the Matlab code y = exp(.001) - 1

(a) Which operation (exp or subtraction) will cause a large magnification of the relative error? Find the magnification
factor (condition number) for this operation, give the approximate answer as a number like 3 · 107. Hint: Use a
Taylor approximation for e.001 to evaluate your expression for the error.
Here x := .001, y1 := ex, y := y1 − 1. The operation which causes the large error is the subtraction y := 1 − y1
since y1 = e.001 is very close to 1. Recall that for z := x+ y we have |εz̃| ≤
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(since there is no error present in the number 1). We now have to find the value of ex

1−ex for x = .001. The Taylor
series for ex is 1 + x+ · · · . Therefore we obtain using the leading term in the numerator and denominator
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Therefore the magnification factor (condition number) is 103.

(b) Can we get a more accurate result if we evaluate the Taylor approximation p3(x) in Matlab?
Use the Taylor polynomial pn(x) about x0 = 0 to approximate f(x) = ex − 1 : For n = 3 we get f(x) ≈ p3(x) =

0 + x+ x2

2! + x3

3! . We have for the absolute error with t ∈ [0, .001]
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and for the relative error (using |f(x)| ≈ |x| = .001)

|f(x)− p3(x)|
|f(x)|

≈ |f(x)− p3(x)|
.001

≤ 103 · 5 · 10−14 = 5 · 10−11

Hence using p3(x) causes an approximation error of about 5 · 10−11. Therefore this will not give a smaller error
than our original “naive code”. We need to use more terms in the Taylor series, then we can obtain a more
accurate result.

4. Consider the matrix A =

 1 2 4
2 1 4
4 1 2


(a) Apply Gaussian elimination using the pivot candidate with the largest absolute value to find the matrices L,U

and the vector p .

L =
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1/4 1 0
1/2 2/7 1
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(b) Use L,U, p to solve the linear system Ax =
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(c) We solve the linear system Ax =
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