
AMSC/CMSC 460/466 T. von Petersdorff 1

Numerical Integration

1 Introduction

We want to approximate the integral

I :=
∫ b

a
f (x)dx

where we are given a, b and the function f as a subroutine.

We evaluate f at points x1, . . . ,xn and construct out of the function values an approximation Q. We want to have a small
quadrature error |Q− I| using as few function evaluations as possible.

We can do this using interpolation:

• construct the interpolating polynomial p(x)

• let Q :=
∫ b

a p(x)dx

• by writing Q in terms of the function values we obtain a quadrature rule of the form

Q = w1 f (x1)+ · · ·+wn f (xn)

In the special case that the function f (x) is a polynomial of degree≤ n− 1 we obtain p(x) = f (x) since the interpolating
polynomial is unique, and hence Q = I. Therefore the quadrature rule is exact for all polynomials of degree≤ n−1.

2 Midpoint Rule, Trapezoid Rule, Simpson Rule

We consider some special cases with n = 1,2,3 points:

Midpoint Rule: Let n = 1 and pick the midpoint x1 := (a+b)/2 . Then p(x) = f (x1) (constant function) and

QMidpt = (b−a) f (x1)

Trapezoid Rule: Let n = 2 and pick the endpoints: x1 := a, x2 := b. Then p(x) is a linear function and Q is the area of
the trapezoid:

QTrap = (b−a)
f (a)+ f (b)

2

Simpson Rule: Let n = 3 and pick the endpoints and midpoint: x1 := a, x2 := (a+b)/2, x3 := b. Then p(x) is a quadratic
function and we obtain

QSimpson = (b−a)
f (x1)+4 f (x2)+ f (x3)

6
.

Proof: Let us consider the interval [a,b] = [−r,r] where r = (b−a)/2. We know that

Q =
∫ b

a
p(x)dx = w1 f (x1)+w2 f (x2)+w3 f (x3)

and we want to find w1,w2,w3. We also know that we must have Q = I for f (x) = 1, f (x) = x, f (x) = x2 yielding the
equations

w1 ·1+w2 ·1+w3 ·1 =
∫ r

−r
1dx = 2r

w1 · (−r)+w2 ·0+w3 · r =
∫ r

−r
xdx = 0

w1 · r2 +w2 ·0+w3 · r2 =
∫ r

−r
x2dx = 2

3 r3

1

AMSC/CMSC 460/466 T. von Petersdorff 2

Solving this system for w1,w2,w3 yields w1 = w3 =
r
3 , w2 =

4
3 r.

The midpoint rule is guaranteed to be exact for polynomials of degree 0. But actually it is also exact for all polynomials of
degree 1: On the interval [−r,r] consider f (x) = c0 + c1x. Then the term c0 is exactly integrated by the midpoint rule. For
the term c1 · x the exact integral is zero, and the midpoint rule also gives zero for this term.

The Simpson rule is guaranteed to be exact for polynomials of degree≤ 2. But actually it is also exact for all polynomials of
degree≤ 3: On the interval [−r,r] consider f (x) = c0 +c1x+c2x2 +c3x3. Then the term c0 +c1x+c2x2 is exactly integrated
by the Simpson rule. For the term c3 · x3 the exact integral is zero, and the Simpson rule also gives zero for this term.

2.1 Errors for the Midpoint Rule, Trapezoid Rule, Simpson Rule

Note that we have for the quadrature error

I−Q =
∫ b

a
(f (x)− p(x))dx

and we know for the interpolating polynomial that

| f (x)− p(x)| ≤ 1
n!

(
max

t∈[a,b]

∣∣∣ f (n)(x)∣∣∣) |(x− x1) · · ·(x− xn)|

yielding

|I−Q| ≤ 1
n!

(
max

t∈[a,b]

∣∣∣ f (n)(x)∣∣∣) ·∫ b

a
|(x− x1) · · ·(x− xn)|dx. (1)

Error for Trapezoid Rule: Here we need to compute
∫ b

a |(x−a)(x−b)|dx. Let us consider the interval [a,b] = [−r,r]:∫ b

a
|(x−a)(x−b)|dx =

∫ r

−r
|(x+ r)(x− r)|dx =

∫ r

−r
(r2− x2)dx =

[
r2x− 1

3 x3]r
−r =

4
3

r3

As r = (b−a)/2 and n = 2 the formula (1) becomes

∣∣I−QTrap∣∣≤ (b−a)3

12
· max

t∈[a,b]

∣∣ f ′′(x)∣∣
Error for Midpoint Rule: We want to exploit that the Midpoint Rule is exact for polynomials of degree 1 and consider
the interpolating polynomial p̃(x) which interpolates f at the nodes x1,x1 (which is the tangent line):

p̃(x) = f [x0]+ f [x0,x0](x− x0) = p(x)+ f [x0,x0](x− x0)∫ b

a
p̃(x)dx =

∫ b

a
p(x)dx+ f [x0,x0] ·

∫ b

a
(x− x0)dx = Q+0

Hence we have using the interpolation error for p̃(x)

|I−Q|=
∣∣∣∣∫ b

a
(f (x)− p̃(x))dx

∣∣∣∣≤ 1
2!

(
max

t∈[a,b]

∣∣∣ f ′′(x)∣∣∣) ·∫ b

a
|(x− x1)(x− x1)|dx︸ ︷︷ ︸
[1

3 (x−x1)3]
b
a
= 2

3(
b−a

2)
3

yielding ∣∣I−QMidpt∣∣≤ (b−a)3

24
· max

t∈[a,b]

∣∣ f ′′(x)∣∣

2

AMSC/CMSC 460/466 T. von Petersdorff 3

Error for Simpson Rule: We want to exploit that the Simpson Rule is exact for polynomials of degree 3 and consider
the interpolating polynomial p̃(x) which interpolates f at the nodes x1,x2,x3,x2 (which also has the correct slope in the
midpoint):

p̃(x) = p(x)+ f [x1,x2,x3,x2](x− x1)(x− x2)(x− x3)∫ b

a
p̃(x)dx =

∫ b

a
p(x)dx+ f [x1,x2,x3,x2] ·

∫ b

a
(x− x1)(x− x2)(x− x3)dx = Q+0

since the function (x− x1)(x− x2)(x− x3) is antisymmetric with respect to the midpoint x2. Hence we have using the
interpolation error for p̃(x)

|I−Q|=
∣∣∣∣∫ b

a
(f (x)− p̃(x))dx

∣∣∣∣≤ 1
4!

(
max

t∈[a,b]

∣∣∣ f (4)(x)∣∣∣) ·∫ b

a

∣∣(x− x1)(x− x2)
2(x− x3)

∣∣dx.

We consider the interval [a,b] = [−r,r] with r = (b−a)/2. Then we have for the integral∫ b

a

∣∣(x− x1)(x− x2)
2(x− x3)

∣∣dx =
∫ r

−r

∣∣(x+ r)x2(x− r)
∣∣dx =

∫ r

−r
(r2− x2)x2 dx =

[
r2 x3

3
− r5

5

]r

−r
=

4
15

r5

yielding ∣∣I−QSimpson∣∣≤ (b−a)5

90 ·32
· max

t∈[a,b]

∣∣∣ f (4)(x)∣∣∣ .
2.2 Higher Order Rules

For given nodes x1, . . . ,xn we can construct a quadrature rule Q = w1 f (x1)+ · · ·+wn f (xn) with an interpolating polynomial
of degree n−1. Using the method from the Simpson rule we can find the weights w1, . . . ,wn by solving a linear system.

Let us consider the interval [0,1]. Since Q[1] = I[1] we have w1 + · · ·+wn = 1. For n = 1, . . . ,8 and n = 10 we get positive
weights. If we integrate a positive function computing the sum Q = w1 f (x1)+ · · ·+wn f (xn) means adding positive numbers,
and this is numerically stable. For n = 9 and n≥ 11 we obtain negative weights w j, so we get positive and negative terms in
the sum.

For larger values of n the size of the weights w j increases exponentially: For [0,1] we get

n 15 25 35 45
∑

n
j=1

∣∣w j
∣∣ 2.0 ·101 5.6 ·103 2.5 ·106 1.4 ·109

This means that in machine arithmetic there will be substantial subtractive cancellation. The reason for the negative weights
is that interpolating polynomials of large degree tend to have very large oscillations, as we saw earlier.

For interpolation we have seen that one can avoid these problems by carefully placing the nodes in a nonuniform way so that
they are more closely clustered together at the endpoints. For interpolation a good choice are the so-called Chebyshev nodes
(which are the zeros of Chebyshev polynomials).

This choice of nodes is also useful for numerical integration. Instead of the zeros of Chebyshev polynomials one can also
choose the extrema of Chebyshev polynomials, and in this case there is an efficient algorithm to compute Q (Clenshaw-Curtis
quadrature).

Another choice are the so-called Gauss nodes for Gaussian quadrature. These nodes are also more closely clustered near
the endpoints, but they are chosen to maximize the polynomial degree for which the rule is exact.

3

AMSC/CMSC 460/466 T. von Petersdorff 4

3 Composite Rules

For a practical integration problem it is better to increase the accuracy by first subdividing the interval into smaller subinter-
vals with a partition

a = x0 < x1 < · · ·< xN−1 < xN = b

and interval sizes
h j := x j− x j−1.

Then we apply one of the basic rules (midpoint, trapezoid or Simpson rule) on each subinterval and add everything together.
This is called a composite rule. For example, the composite trapezoid rule is defined by

QTrap
N := QTrap

[x0,x1]
+ · · ·+QTrap

[xN−1,xN]

where QTrap
[x j−1,x j]

= h j
1
2 (f (x j−1)+ f (x j)). Similarly we can define the composite midpoint rule and the composite Simpson

rule.

Work: For the composite trapezoid rule with N subintervals we use N +1 function evaluations.
For the composite midpoint rule with N subintervals we use N function evaluations.
For the composite Simpson rule with N subintervals we use 2N +1 function evaluations.

3.1 Error for Composite Rules

The error of the composite trapezoid rule is the sum of the errors on each subinterval:

I−QTrap
N =

N

∑
j=1

(
I[x j−1,x j]−QTrap

[x j−1,x j]

)
≤

N

∑
j=1

∣∣∣I[x j−1,x j]−QTrap
[x j−1,x j]

∣∣∣
∣∣∣I−QTrap

N

∣∣∣≤ N

∑
j=1

∣∣∣I[x j−1,x j]−QTrap
[x j−1,x j]

∣∣∣≤ 1
12

N

∑
j=1

(
max

[x j−1,x j]

∣∣ f ′′(t)∣∣)h3
j

Similarly we can obtain estimates for the composite midpoint rule and the composite Simpson rule.

3.2 Subintervals of equal size

The simplest choice is to choose all subintervals of the same size h = (b− a)/N. In this case we obtain for the composite
trapezoid rule ∣∣∣I−QTrap

N

∣∣∣≤ N

∑
j=1

1
12

(
max

[x j−1,x j]

∣∣ f ′′(t)∣∣)h3 ≤ 1
12

(
max
[a,b]

∣∣ f ′′(t)∣∣)h3

(
N

∑
j=1

1

)
∣∣∣I−QTrap

N

∣∣∣≤ 1
12
· (b−a)3

N2 ·max
[a,b]

∣∣ f ′′(t)∣∣
If f ′′(x) is continuous for x ∈ [a,b] we therefore obtain with C = (b−a)3

12 ·max[a,b] | f ′′(t)| that∣∣∣I−QTrap
N

∣∣∣≤ C
N2 .

This shows that the error tends to zero as N→ ∞.

Composite midpoint rule: If f ′′(x) is continuous for x ∈ [a,b] we obtain in the same way

∣∣∣I−QMidpt
N

∣∣∣≤ 1
24
· (b−a)3

N2 ·max
[a,b]

∣∣ f ′′(t)∣∣

4

AMSC/CMSC 460/466 T. von Petersdorff 5

where we also have
∣∣∣I−QMidpt

N

∣∣∣≤ C
N2 .

Composite Simpson rule: If f (4)(x) is continuous for x ∈ [a,b] we obtain in the same way

∣∣∣I−QSimpson
N

∣∣∣≤ 1
90 ·32

· (b−a)5

N4 ·max
[a,b]

∣∣∣ f (4)(t)∣∣∣
In this case we have

∣∣∣I−QSimpson
N

∣∣∣≤ C
N4 , so the composite Simpson rule will converge faster than the composite trapezoid or

midpoint rule.

3.3 If we only know that f (x) is continuous

What happens if f (x) is not smooth enough, i.e., there does not exist a continuous second derivative f ′′(x) on [a,b]?

Assume that f (x) is continuous on [a,b]. Then we know from calculus that we obtain the integral as the limit of Riemann
sums: Define a subdivision a = x0 < x1 < · · ·< xN = b with maximal interval size dN := max j=1,...,N

∣∣x j− x j−1
∣∣. Then pick

points t j ∈ [x j−1,x j] in each subinterval and define the Riemann sum

RN :=
N

∑
j=1

f (t j)(x j− x j−1)

If we use a sequence of subdivisions with dN → 0 we have RN → I as N→ ∞.

For a given subdivision define Rleft
N as the Riemann sum where we use the left endpint t j := x j−1 of each subinterval. Let

Rright
N denote the Riemann sum where we use the right endpoint t j := x j, and let Rmid

N denote the Riemann sum where we use
the midpoint t j := 1

2(x j−1 + x j). Each of these Riemann sums converges to I for a sequence of subdivisions with dN → 0.
Note that we have

QMidpt
N = Rmid

N , QTrap
N = 1

2

(
Rleft

N +Rright
N

)
, QSimpson

N = 1
6

(
Rleft

N +4Rmid
N +Rright

N

)
and hence

QMidpt
N → I, QTrap

N → I, QSimpson
N → I for a sequence of subdivisions with dN → 0.

3.4 Subintervals of different size, adaptive subdivision

For the compositive trapezoid rule QTrap
N the quadrature error

∣∣∣I−QTrap
N

∣∣∣≤ N

∑
j=1

∣∣∣I[x j−1,x j]−QTrap
[x j−1,x j]

∣∣∣≤ 1
12

N

∑
j=1

(
max

[x j−1,x j]

∣∣ f ′′(t)∣∣)h3
j

depends on the size of the 2nd derivative max[x j−1,x j] | f ′′(t)| on each subinterval, multiplied by h3
j where h j is the length of

the subinterval. If | f ′′(x)| is small in one part of [a,b] we can use large interval sizes h j there. If | f ′′(x)| is large in another
part of [a,b] we should compensate for that with small interval sizes h j there. This is called an adaptive subdivision.

Example: We want to find

I =
∫ 6

0
f (x)dx, with f (x) =

x3− x
1+ x4 (2)

Here | f ′′| is small for x > 3, so we can use large subintervals. For smaller x and in particular close to x = .5 we have large
values for | f ′′|, hence we should use smaller subintervals. An adaptive subdivision should look like this:

5

AMSC/CMSC 460/466 T. von Petersdorff 6

0 1 2 3 4 5 6

x

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

subdivision for adaptive quadrature

4 Adaptive quadrature

In practice we do not know f ′′(x). We are only given a subroutine f (x), the interval [a,b] and a desired tolerance Tol
(e.g., Tol = 10−5) . We then want to find a subdivision x0 < x1 < · · · < xN such that the composite trapezoid rule gives an
approximation QTrap

N with
∣∣∣QTrap

N − I
∣∣∣≤ Tol. How can we do this?

For an adaptive algorithm we need the following ingredients: On each subinterval [α,β] of length h := β −α we need

• an approximation for the integral I[α,β]: we use the trapezoid rule QTrap
[α,β] =

h
2
(f (α)+ f (β))

• an error estimate for
∣∣∣QTrap

[α,β]− I[α,β]

∣∣∣: Obviously we don’t know the exact integral I[α,β]. But we can evaluate the

function in the midpoint γ = (α +β)/2 and find the Simpson rule approximation QSimp
[α,β] =

h
6 (f (α)+4 f (γ)+ f (β)).

We know that QTrap
[α,β], QSimp

[α,β] satisfy

∣∣∣QTrap
[α,β]− I[α,β]

∣∣∣≤ h3

12
max

t∈[α,β]

∣∣ f ′′(t)∣∣=C2h3,
∣∣∣QSimp

[α,β]− I[α,β]

∣∣∣≤ h5

90×32
max

t∈[α,β]

∣∣∣ f (4)(t)∣∣∣=C4h5

Clearly for small interval length h the Simpson approximation is much closer to I[α,β] than the trapezoid approximation.
Therefore we can approximate the error using∣∣∣QTrap

[α,β]− I[α,β]

∣∣∣≈ ∣∣∣QTrap
[α,β]−QSimp

[α,β]

∣∣∣
where the right hand side can be easily computed. This will be a good approximation for the error if the subinterval is
small.

• an accuracy goal
∣∣∣QTrap

[α,β]− I[α,β]

∣∣∣≤ Tol[α,β] for the subinterval: On the whole interval we want an error
∣∣∣QTrap

N − I
∣∣∣≤

Tol. Therefore it seems reasonable to require for the subinterval [α,β] a tolerance proportional to its length h: We
want ∣∣∣QTrap

[α,β]− I[α,β]

∣∣∣≤ h
b−a

Tol (3)

(e.g., for an subinterval of half the length we want half of the quadrature error).

We can implement these ideas using a recursive Matlab function Q=adaptint(f,a,b,Tol) as follows:

function Q = adaptint(f,a,b,Tol)
fa = f(a); fb = f(b);
QT = (b-a)/2*(fa+fb); % Trapezoid rule
c = (a+b)/2; fc = f(c); % evaluate f in midpoint
QS = (b-a)/6*(fa+4*fc+fb); % Simpson rule

6

AMSC/CMSC 460/466 T. von Petersdorff 7

% for small intervals we can approximate error QT-I by QT-QS
if abs(QT-QS)<=Tol % if estimated error is <= Tol
Q = QT; % accept trapezoid rule value

else
Q = adaptint(f,a,c,Tol/2) + adaptint(f,c,b,Tol/2);

% use algorithm for [a,c] and [c,b] with Tol/2
end

We save this as an m-file adaptint.m. Then we can approximate the integral in our example (2) using

>> f = @(x) (x^3-x)/(1+x^4)
>> Q = adaptint(f,0,6,1e-2)
Q =

1.0214243535841

The actual error is |Q− I| ≈ 9.85 · 10−4. Here adaptint uses the subdivision shown in the figure on page 5 with N = 31
subintervals. Note that we evaluate the function also in the midpoints of these intervals, so the total number of function
evaluations needed is 63.

Remarks:

1. The recursion will terminate: Assume that f (x) is continuous on [a,b]. Then for any given ε > 0 there exists δ > 0
such that

s, t ∈ [a,b] with |s− t|< δ =⇒ | f (s)− f (t)|< ε (4)

We are given a tolerance Tol. After k levels of recursion we have subintervals [α,β] of length β −α = 2−k(b−a). We
need to show that the condition ∣∣∣QTrap

[α,β]−QSimp
[α,β]

∣∣∣≤ Tol · β −α

b−a
(5)

is satisfied if k is sufficiently large. We have with γ := 1
2(α +β)

QTrap
[α,β]−QSimp

[α,β] =
1
3(β −α)([f (α)− f (γ)]+ [f (β)− f (γ)])

Therefore (5) holds if we have∣∣∣QTrap
[α,β]−QSimp

[α,β]

∣∣∣≤ 1
3(β −α)(| f (α)− f (γ)|+ | f (β)− f (γ)|)

!
≤ Tol · β −α

b−a

We now use ε :=
3
2
· Tol

b−a
and obtain a δ > 0 such that (4) holds. Therefore (5) will hold if k satisfies 2−k(b−a)< δ .

2. During the recursion the above code actually re-evaluates the already computed values fa and fb again. We can fix
this using

function Q = adaptint(f,a,b,Tol,fa,fb)
if nargin==4 % if function is called as adaptint(f,a,b,Tol)
fa = f(a); fb = f(b); % compute fa,fb

end % otherwise we get fa,fb passed as arguments
...
Q = adaptint(f,a,c,Tol/2,fa,fc) + adaptint(f,c,b,Tol/2,fc,fb);

end

3. The algorithm is based on the assumption that QS is a better approximation than QT. Hence we should get a more
accurate result by changing the line Q = QT to Q = QS. For the above example we then get Q = 1.02040470316526
with the smaller error |Q− I| ≈ 3.47 ·10−5. Note that we are now using a composite Simpson rule approximation for
Q, but using a subdivision based on error bounds for the trapezoid rule. In order to obtain a good error estimate for the
Simpson rule we would need additional function evaluations to compute a value Q̃ which is more precise than QS so
that we can approximate QS− I by QS− Q̃.

7

AMSC/CMSC 460/466 T. von Petersdorff 8

4. Note that adaptive quadrature can give completely wrong results:

f = @(x)exp(-10*x^2)
Q = adaptint(f,-1,3,1e-4)
Q =

9.07998595249697e-05

The correct value is I =
∫ 3

−1
e−10x2

dx≈ 0.560497. What happened? The function f (x) has a sharp peak near x = 0

and is almost zero outside of [−.8, .8]:

-1 -0.5 0 0.5 1 1.5 2 2.5 3

x

0

0.2

0.4

0.6

0.8

1
exp (- 10 x

2
)

The adaptive quadrature evaluates for a = −1 and b = 3 the values f (−1) ≈ 0, f (3) ≈ 0 yielding QT ≈ 0. At the
midpoint c = 1 we get f (1) ≈ 0, so also QS ≈ 0 and hence |QT −QS| ≈ 6 · 10−5 which is less than our tolerance
10−4. Hence our program accepts the trapezoid rule value QT , based on only three function values at x = −1,1,3,
completely missing the peak near x = 0.
A quadrature method can never guarantee that the error is less than the tolerance: The only information we have
are finitely many function values, and the function could have some crazy behavior between those values.
If a function has features like sharp peaks or singularities which the quadrature may miss we can “help the quadrature
method” by subdividing the integral: In our example we can split the integral at x = 0:

Q = adaptint(f,-1,0,1e-4) + adaptint(f,0,3,1e-4)
Q =

0.560539838164273

which gives an error |Q− I| ≈ 4.3 ·10−5.

5. Adaptive quadrature works efficiently even for functions with singularities
We saw in section 3.2: For functions f (x) where f ′′(x) is continuous we can use subintervals of equal size, and the
quadrature error decays like

∣∣∣QTrap
N − I

∣∣∣≤ c
N2 .

For integrals like I =
∫ 1

0
x1/3dx this does not work since for f (x) = x1/3 the 2nd derivative f ′′(x) =−2

9 x−5/3 becomes

infinite near 0. We now use our adaptive algorithm:

8

AMSC/CMSC 460/466 T. von Petersdorff 9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.2

0.4

0.6

0.8

1
f(x) = x

1/3
: subdivision for adaptive quadrature

f = @(x) x^(1/3);
Tol = 1e-2; % given tolerance
Q = adaptint(f,0,1,Tol);
err = abs(Q - 3/4) % quadrature error, exact integral is I=3/4

For Tol=1e-2,1e-4,1e-6, etc. we get for the number N of function evaluations and the error |Q− I|

Tol N |Q− I|
10−2 29 6.5 ·10−3

10−4 243 5.8 ·10−5

10−6 2.37 ·103 5.5 ·10−7

10−8 2.34 ·104 5.6 ·10−9

10−10 2.35 ·105 5.6 ·10−11

10−12 2.37 ·106 5.0 ·10−13

10−14 2.35 ·107 5.5 ·10−15

We see that each time N gets multiplied by about 10, and the error gets multiplied by about 10−2, hence we have
|QN− I| ≤ CN−2. Therefore our algorithm gives adaptive subdivisions where the composite trapezoid rule |QN− I|
decays with the same rate O(N−2) we can achieve for smooth functions.

9

