Assignment #2, due Thursday, May 7

1. We consider three masses and four springs with spring constants k_1, k_2, k_3, k_4 . The masses can only move horizontally. This is the picture at equilibrium:

$$\begin{bmatrix} k_1 & & & \\ m_1 & m_2 & m_2 & m_3 \end{bmatrix} \xrightarrow{k_3} \begin{bmatrix} m_3 & & & \\ m_3 & & & \\ m_4 & & & \\ m_1 & & & m_2 = m_3 = 1 \text{ and } k_1 = 2, \ k_2 = k_3 = 1, \ k_4 = 2.$$

- (a) We pull with horizontal forces F_1, F_2, F_3 at the three masses. Then the masses will move to new equilibrium positions. We want to know the resulting horizontal displacements x_1, x_2, x_3 of the masses from their original positions. Write down the linear system $A\vec{x} = \vec{F}$ with a 3×3 matrix A. Use Matlab to find the answer for $\vec{F} = [4, 2, 4]^{\top}$.
- (b) Now we consider the time dependent problem with $\vec{F} = \vec{0}$. Find the eigenmodes of the form $\cos(\omega t)\vec{v}$ by hand (hint: the eigenvalues are small integers). Check your answer in Matlab using symbolic matrices.
- (c) Now consider the problem with $\vec{F} = \vec{0}$ and initial conditions

$$\vec{x}(0) = \begin{bmatrix} 1\\ -1\\ 1 \end{bmatrix}, \qquad \vec{x}'(0) = \begin{bmatrix} 3\\ 0\\ 3 \end{bmatrix}$$

Write down the general solution with parameters c_1, c_2, c_3 and d_1, d_2, d_3 . Write down the linear system for \vec{c} and for \vec{d} . Then use Matlab to find \vec{c}, \vec{d} .

- (d) Now consider the problem with $\vec{F} = [4, 2, 4]$ and the same initial conditions as (c). Find the solution of the initial value problem. You can use Matlab to solve the linear systems.
- 2. For the following matrices: Find a nonsingular matrix $V \in \mathbb{C}^{n \times n}$ and a matrix $B \in \mathbb{C}^{n \times n}$ in Jordan form (i.e., having Jordan boxes along diagonal) such that AV = VB. Do this by hand (hint: there are only two different eigenvalues, and one eigenvalue is easy to see). Note: Use $(A \lambda I)\vec{w} = \vec{v}$ to find a generalized eigenvector \vec{w} ; here the eigenvector \vec{v} has to be carefully chosen so that a solution \vec{w} exists.

In Matlab use [V,D]=eig(A) with symbolic matrices. Then use [V,B]=jordan(A).

(i)
$$A = \begin{bmatrix} -2 & 0 & 0 & 0 \\ 0 & 1 & 1 & 4 \\ 0 & -3 & -1 & -2 \\ 0 & 3 & -1 & 0 \end{bmatrix}$$
, (ii) $A = \begin{bmatrix} -2 & 0 & 0 & 0 \\ 1 & 1 & 1 & 4 \\ 1 & -3 & -1 & -2 \\ 0 & 3 & -1 & 0 \end{bmatrix}$