
Solution Assignment #2, due Thursday, May 7

1. We consider three masses and four springs with spring constants k1, k2, k3, k4. The masses can only
move horizontally. This is the picture at equilibrium:

m1 m2 m3

k1 k2 k3 k4

Let m1 = m2 = m3 = 1 and k1 = 2, k2 = k3 = 1, k4 = 2.

(a) We pull with horizontal forces F1, F2, F3 at the three masses. Then the masses will move to new
equilibrium positions. We want to know the resulting horizontal displacements x1, x2, x3 of the
masses from their original positions. Write down the linear system A~x = ~F with a 3× 3 matrix
A. Use Matlab to find the answer for ~F = [4, 2, 4]>.

A =

 k1 + k2 −k2 0
−k2 k2 + k3 −k3
0 −k3 k3 + k4

 =

 3 −1 0
−1 2 −1
0 −1 3

, solving A~x =

 4
2
4

 gives ~x =

 5
2
7
2
5
2


(b) Now we consider the time dependent problem with ~F = ~0. Find the eigenmodes of the form

cos(ωt)~v by hand (hint: the eigenvalues are small integers). Check your answer in Matlab using
symbolic matrices.
det(A− λI) = −λ3 + 8λ2 − 19λ+ 12 = 0 gives eigenvalues λ1 = 1, λ2 = 3, λ3 = 4

the corresponding eigenvectors are ~v(1) =

 1
2
1

, ~v(2) =
 −10

1

, ~v(3) =
 1
−1
1


the eigenfrequencies are ωj =

√
λj, yielding the three eigenmodes

cos (t)

 1
2
1

 , cos(
√
3t)

 −10
1

 , cos(2t)

 1
−1
1


(c) Now consider the problem with ~F = ~0 and initial conditions

~x(0) =

 1
−1
1

 , ~x′(0) =

 3
0
3


Write down the general solution with parameters c1, c2, c3 and d1, d2, d3. Write down the linear
system for ~c and for ~d. Then use Matlab to find ~c, ~d.
The general solution is

~x(t) =c1 cos(ω1t)~v
(1) + c2 cos(ω2t)~v

(2) + c3 cos(ω3t)~v
(3)

+ d1 sin(ω1t)~v
(1) + d2 sin(ω2t)~v

(2) + d3 sin(ω3t)~v
(3) (1)

~x′(t) =− c1ω1 sin(ω1t)~v
(1) − c2ω2 sin(ω2t)~v

(2) − c3ω3 sin(ω3t)~v
(3)

+ d1ω1︸︷︷︸
e1

cos(ω1t)~v
(1) + d2ω2︸︷︷︸

e2

cos(ω2t)~v
(2) + d3ω3︸︷︷︸

e3

cos(ω3t)~v
(3)

where we define ej := djωj. Plugging in t = 0 into these two equations gives with V =[
~v(1), ~v(2), ~v(3)

]
~x(0) = c1~v

(1) + c2~v
(2) + c3~v

(3) = V ~c

~x′(0) = e1~v
(1) + e2~v

(2) + e3~v
(3) = V ~e



so the initial conditions give the two linear systems V ~c =

 1
−1
1

 and V ~e =

 3
0
3

. Solving

the linear systems gives ~c =

 0
0
1

 and ~e =

 1
0
2

 giving ~d =

 1
0
1

 and the solution of the

initial value problem

~x(t) = cos(2t)

 1
−1
1

+ sin(t)

 1
2
1

+ sin(2t)

 1
−1
1


(d) Now consider the problem with ~F = [4, 2, 4] and the same initial conditions as (c). Find the

solution of the initial value problem. You can use Matlab to solve the linear systems.

Now the general solution consists of the particular solution ~xpart =

 5
2
7
2
5
2

 from (a) plus the

general solution ~xhom(t) given by (1):

~x(t) = ~xpart + ~xhom(t)

Now the initial conditions give the two linear systems

 5
2
7
2
5
2

+V ~c =
 1
−1
1

 and V ~e =

 3
0
3

 .
Solving the linear systems gives ~c =

 −20
1
2

 and ~e =

 1
0
2

 giving ~d =

 1
0
1

 and the solution

of the initial value problem

~x(t) =

 5
2
7
2
5
2

− 2 cos(t)

 1
2
1

+
1

2
cos(2t)

 1
−1
1

+ sin(t)

 1
2
1

+ sin(2t)

 1
−1
1


2. For the following matrices: Find a nonsingular matrix V ∈ Cn×n and a matrix B ∈ Cn×n in Jordan

form (i.e., having Jordan boxes along diagonal) such that AV = V B. Do this by hand (hint: there
are only two different eigenvalues, and one eigenvalue is easy to see). Note: Use (A − λI)~w = ~v to
find a generalized eigenvector ~w; here the eigenvector ~v has to be carefully chosen so that a solution
~w exists.
In Matlab use [V,D]=eig(A) with symbolic matrices. Then use [V,B]=jordan(A) .

(i)A =


−2 0 0 0
0 1 1 4
0 −3 −1 −2
0 3 −1 0

 , (ii)A =


−2 0 0 0
1 1 1 4
1 −3 −1 −2
0 3 −1 0


For both matrices we obtain the same characteristic polynomial p(λ) = (−2 −

λ) det

 1− λ 1 4
−3 −1− λ 2
3 −1 −λ

. Then p(λ) = 0 gives the eigenvalues 4,−2,−2,−2.

Case (i): For λ = 4 we obtain

M = A− 4I =


−6 0 0 0
0 −3 1 4
0 −3 −5 −2
0 3 −1 −4

 row ech. form−→


−6 0 0 0
0 −3 1 4
0 0 −6 −6
0 0 0 0

 basis for nullM−→


0
1
−1
1





For λ = −2 we obtain

M = A+ 2I =


0 0 0 0
0 3 1 4
0 −3 1 −2
0 3 −1 2

 row ech. form−→


0 3 1 4
0 0 2 2
0 0 0 0
0 0 0 0

 basis for nullM−→


1
0
0
0

 ,


0
−1
−1
1


So we found 2 linearly independent eigenvectors for λ = −2. Hence we need to find one generalized

eigenvector by solving M ~w = ~v where ~v is chosen in span
{

1
0
0
0

 ,


0
−1
−1
1

} so that the linear

system has a solution. Since the first row of M is all zeros this only works for ~v =


0
−1
−1
1

: Solving

M ~w =


0
−1
−1
1

 gives as one possible solution ~w =


0
0
−1
0

. Therefore we obtain 2 Jordan chains of

length 1 (for λ = 4, λ = −2) and one Jordan chain of length 2 (for λ = −2):

V =


0 1 0 0
1 0 −1 0
−1 0 −1 −1
1 0 1 0

 , B =


4 0 0 0
0 −2 0 0
0 0 −2 1
0 0 0 −2


Case (ii): For λ = 4 we obtain

M = A− 4I =


−6 0 0 0
1 −3 1 4
1 −3 −5 −2
0 3 −1 −4

 row ech. form−→


−6 0 0 0
0 −3 1 4
0 0 −6 −6
0 0 0 0

 basis for nullM−→


0
1
−1
1

 = ~v(1)

For λ = −2 we obtain

M = A+ 2I =


0 0 0 0
1 3 1 4
1 −3 1 −2
0 3 −1 2

 row ech. form−→


1 3 1 4
0 −6 0 −6
0 0 −1 −1
0 0 0 0

 basis for nullM−→


0
−1
−1
1

 = ~v(2)

So we found only 1 eigenvector ~v(2) for λ = −2. Hence we need to find two generalized eigenvectors
~v(2,1), ~v(2,2) by solving M~v(2,1) = ~v(2) and M~v(2,2) = ~v(2,1): (note that these linear systems have
infinitely many solutions, but we can just pick an arbitrary solution):

ForM~v(2,1) =


0
−1
−1
1

 one solution is ~v(2,1) =


0
0
−1
0



ForM~v(2,2) =


0
0
−1
0

 one solution is ~v(2,2) =


−1
1
6
1
2

0





Therefore we obtain one Jordan chains of length 1 (for λ = 4) and one Jordan chain of length 3 (for
λ = −2):

V =


0 0 0 −1
1 −1 0 1

6

−1 −1 −1 1
2

1 1 0 0

 , B =


4 0 0 0
0 −2 1 0
0 0 −2 1
0 0 0 −2


Note that there are infinitely many choices for ~v(2,1), ~v(2,2), so your solution or the one given by
Matlab’s jordan command may look different.


