
The determinant

Motivation: area of parallelograms, volume of parallepipeds

Two vectors in R2: “oriented area” of a parallelogram

Consider two vectors a(1),a(2) ∈ R2 which are linearly independent. We say

• a(1),a(2) have positive orientation if a(2) is the left of a(1)

• a(1),a(2) have negative orientation if a(2) is the right of a(1)

The two vectors a(1),a(2) define the parallelogram consisting of the points c1a(1)+ c2a(2) with c1,c2 ∈ [0,1].

We are interested in the oriented area D of the parallelogram:

D =

{
area if a(1),a(2)have positive orientation
−area if a(1),a(2)have negative orientation

We call this “oriented area” the determinant of the matrix A = [a(1),a(2)] ∈ R2×2:

D = detA

Note that we have the following properties:

1. det
[

1 0
0 1

]
= 1

2. detA = 0 ⇐⇒ a(1),a(2) are linearly dependent

3. det
[
ca(1),a(2)

]
= cdet

[
a(1),a(2)

]
for any scalar c ∈ R

det
[
a(1)+b(1),a(2)

]
= det[a(1),a(2)]+det[b(1),a(2)]

This means that the mapping det[a(1),a(2)] is a linear function of the first column a(1)

By the same argument, the mapping det[a(1),a(2)] is a linear function of the second column a(2)

a
(1)

a
(2)

(-2)a
(1)

det
[
(−2)a(1),a(2)

]
= (−2) ·det

[
a(1),a(2)

]
oriented area of yellow parallelogram
= (-2)(oriented area of cyan parallelogram)

det
[
a(1)+b(1),a(2)

]
= det

[
a(1),a(2)

]
+det

[
b(1),a(2)

]
area of yellow parallelogram
= sum of areas of two cyan parallelograms
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Three vectors in R3: “oriented volume” of a parallelepiped

Consider three vectors a(1),a(2),a(3) ∈ R3 which are linearly independent. We say (somewhat imprecisely)

• a(1),a(2),a(3) have positive orientation if they are arranged according three finger rule (like thumb, index finger,
middle finger of the right hand)

• a(1),a(2),a(3) have negative orientation if they are arranged in the opposite way (i.e., a(1),a(2),−a(3) have positive
orientation)

Three vectors a(1),a(2),a(3) ∈R3 form a parallelepiped consisting of the points c1a(1)+c2a(2)+c3a(3) with c1,c2,c3 ∈ [0,1].

We are interested in the oriented volume D of the parallelepiped:

D =

{
volume if a(1),a(2),a(3)have positive orientation
−volume if a(1),a(2),a(3)have negative orientation

We call this “oriented volume” the determinant of the matrix A = [a(1),a(2),a(3)] ∈ R:

D = det(A)

Note that we have the following properties:

1. det

 1 0 0
0 1 0
0 0 1

= 1

2. detA = 0 ⇐⇒ a(1),a(2),a(3) are linearly dependent

3. det
[
ca(1),a(2),a(3)

]
= cdet

[
a(1),a(2),a(3)

]
for any scalar c ∈ R

det
[
a(1)+b(1),a(2),a(3)

]
= det[a(1),a(2),a(3)]+det[b(1),a(2),a(3)]

This means that det[a(1),a(2),a(3)] is a linear function of the first column a(1)

det[a(1),a(2),a(3)] is a linear function of the second column a(2)

det[a(1),a(2),a(3)] is a linear function of the third column a(3)

det
[
(−2)a(1),a(2),a(3)

]
= (−2) ·det

[
a(1),a(2),a(3)

]
oriented volume of yellow parallelepiped
= (-2)(oriented volume of cyan parallelepiped)

det
[
a(1)+b(1),a(2),a(3)

]
= det

[
a(1),a(2),a(3)

]
+

det
[
b(1),a(2),a(3)

]
volume of yellow parallelepiped
= sum of volumes of two cyan parallelepipeds
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Abstract definition

Consider the matrix A = [a(1), . . . ,a(n)] ∈ Rn×n. We want to find a function detA with the following three properties

1. det I = 1 where I is the n×n idenitity matrix

2. detA = 0 ⇐⇒ a(1), . . . ,a(n) are linearly dependent

3. det
[
a(1), . . . ,a(n)

]
is a linear function of a(1)

...
is a linear function of a(n)

Lemma 1. Assume the function det : Rn×n→ R satisfies (1.), (2.), (3.), then we have for A ∈ Rn×n and c ∈ R

det[a(1),a(2), . . . ,a(n)] = det
[
a(1),a(2)+ ca(1),a(3), . . . ,a(n)

]
(1)

det
[
a(1),a(2), . . . ,a(n)

]
=−det[a(2),a(1),a(3), . . . ,a(n)] (2)

Proof. Note that det[a(1),ca(1),a(3), . . . ,a(n)] = 0 by property (3.). Hence (1) follows from property (2.).

In order to prove (2) we use (writing just “. . .” for “a(3), . . . ,a(n)”) property (1)

This means

• adding a multiple of one column to another column does not change the determinant

• swapping two columns changes the sign of the determinant

It is still not clear whether we can we find such a function, or whether there are multiple such functions.

Theorem 1. There is a unique function det : Rn×n→ R which satisfies properties (1.), (2.), (3.).

Induction Proof of Theorem 1

Case n = 1

For a 1×1 matrix A = [a11] we have

det[a11]
(3.)
= a11 det[1]

(1.)
= a11

and this function det[a11] = a11 satisfies properties (1.), (2.), (3.).

Induction step: assuming result for n−1 show result for n

We assume that there is a unique function det : A(n−1)×(n−1)→ R satisfying properties (1.), (2.), (3.). We want to show that
there is a unique function det : Rn×n→ R satisfying properties (1.), (2.), (3.).

Claim 1. For any function det : Rn×n→ R satisfying (1.), (2.), (3.) there holds

det



0 a11 · · · a1,n−1
...

...
...

0 a j−1,1 · · · a j−1,n−1
1 0 · · · 0
0 a j,1 · · · a j,n−1
...

...
...

0 an−1,1 · · · an−1,n−1


︸ ︷︷ ︸

Ã

= (−1) j−1 det

 a11 · · · a1,n−1
...

...
a1,n−1 · · · an−1,n−1


︸ ︷︷ ︸

A
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Proof. The function ˜det : R(n−1)×(n−1→ R,

 a11 · · · a1,n−1
...

...
a1,n−1 · · · an−1,n−1

 7→ (−1) j−1 det Ã satisfies properties (1.), (2.),(3.):

Property (1.): ˜det(I) = (−1) j−1 det[e( j),e(1), . . . ,e( j−1),e( j+1), . . . ,e(n)] where e(k) denotes the kth column of the n×n identity
matrix. We can change the matrix [e( j),e(1), . . . ,e( j−1),e( j+1), . . . ,e(n)] with ( j−1) column interchanges to the n×n identity
matrix. Hence we get from (2) and (1.) that

det[e( j),e(1), . . . ,e( j−1),e( j+1), . . . ,e(n)] = (−1) j−1 ·1

Property (2.): The columns of the matrix Ã are linearly independent ⇐⇒ the columns of the matrix A are linearly indepen-
dent.
Property (3.): We obtain ˜det[a(1)+ b(1),a(2), . . . ,a(n−1)] = ˜det[a(1),a(2), . . . ,a(n−1)]+ ˜det[b(1),a(2), . . . ,a(n−1)] since we have
property (3.) for det on Rn×n.
Since by the induction there is a unique function det : Rn×n→ R satisfying (1.), (2.), (3.) we must have ˜det = det.

Notation: For A ∈ Rn×n let A[i j] ∈ R(n−1)×(n−1) denote the matrix with row i and column j removed.

Claim 2. For any function det : Rn×n→ R satisfying (1.), (2.), (3.) there holds

detA = a11 detA[11]−a21 detA[21]+ · · ·+(−1)n−1an1 detA[n,1] (3)

Proof. We can write the first column a(1) = a11e(1)+ · · ·+ an1e(n). By property (3.) the function det is linear in the first
column, hence

detA = a11 det
[
e(1),a(2), . . . ,a(n)

]
+ · · ·+an1 det

[
e(n),a(2), . . . ,a(n)

]
Consider the matrix [e(1),a(2), . . . ,a(n)]: If we subtract a12 times column 1 from column 2, . . . , subtract a1n times column 1

from column n we obtain the matrix


1 0 · · · 0
0 a22 · · · a2n
...

...
...

0 an2 · · · ann

which must have the same determinant by (1). Therefore claim 1

givesdet
[
e(1),a(2), . . . ,a(n)

]
= detA[11]. We obtain in the same way

det
[
e( j),a(2), . . . ,a(n)

]
= (−1) j−1 detA[ j1]

Note that we have obtained a formula for computing the determinant of an n×n matrix using determinants of (n−1)×(n−1)
matrices. Therefore we have obtained a unique definition for detA:

• for n = 1: det [a11] = a11

• for n = 2: det
[

a11 a12
a21 a22

]
= a11 det [a22]−a21 det [a12] = a11a22−a21a12

• for n = 3: det

 a11 a12 a13
a21 a22 a23
a31 a32 a33

= a11 det
[

a22 a23
a32 a33

]
︸ ︷︷ ︸
(a22a33−a23a32)

−a21 det
[

a12 a13
a32 a33

]
︸ ︷︷ ︸
(a12a33−a12a32)

+a31 det
[

a12 a13
a22 a23

]
︸ ︷︷ ︸
(a12a23−a13a22)

Example:

det

 1 2 3
4 5 6
7 8 9

= 1 ·det
[

5 6
8 9

]
︸ ︷︷ ︸

45−48

−4 ·det
[

2 3
8 9

]
︸ ︷︷ ︸

18−24

+7 ·det
[

2 3
5 6

]
︸ ︷︷ ︸

12−15

= (−3)+24−21 = 0
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Note that for n = 3 we obtain a sum of 3! = 6 terms. For n = 4 we obtain 4! = 24 terms. For a matrix A ∈ Rn×n applying
the recursion formula gives a sum of n! terms. Unfortunately n! grows very rapidly with increasing n which makes it
impractical to use this method for n > 3.

Fortunately there is a more efficient way to compute the determinant: We can use column operations and column interchanges
to reduce a matrix A to triangular form (in the same way we used row operations in Gaussian elimination): (here we show
the pivot candidates in red)

A=


∗ ∗ ∗ ∗ ∗
∗ · · · · · · · · · ∗
...

...
...

...
∗ · · · · · · · · · ∗

→


~ 0 · · · · · · 0
∗ ∗ · · · · · · ∗
... ∗ · · · · · · ∗
...

...
...

∗ ∗ · · · · · · ∗

→


~ 0 · · · · · · 0
∗ ~ 0 · · · 0
∗ ∗ ∗ · · · ∗
...

...
...

∗ ∗ · · · · · · ∗

→···→


~ 0 · · · · · · 0
∗ ~ 0 · · · 0

∗ ∗ ~
. . .

...
...

...
. . . . . . 0

∗ ∗ · · · ∗ ~

=U

There are two cases:

• We end up with a triangular matrix U which has nonzero elements on the diagonal. Each column interchange switches
the sign of the determinant. The column operations do not change the sign of the determinant. By (3) we obtain
detU = u11u22 · · ·unn. If we used k column interchanges we obtain

detA = (−1)ku11u22 · · ·unn (4)

• The algorithm breaks down in row j ∈ {1, . . . ,n} since all pivot candidates are zero. In this case the matrix is singular
and detA = 0 .

Note:

• Since detA= detA> (see below) we can just as well use the standard Gaussian elimination with row operations (instead
of column operations), and (4) still holds (where U is the resulting upper triangular matrix, and k is the number of row
interchanges during the elimination).

• Since Gaussian elimination takes 1
3 n3 +O(n2) operations this method is much faster than the recursion formula which

takes n! operations.

To finish the proof of Theorem 1 we must prove that our function det given by 3 really satisfies properties (1.), (2.), (3.) for
A ∈ Rn×n. [I skip this proof here.]

Additional properties of the determinant

Instead of column 1 we can use any column j for the recursion formula: (this follows since each swap of columns switches
the sign of the determinant)

detA =
n

∑
i=1

(−1)i+ jai j detA[i j] (5)

Instead of columns we can also use rows for the recursion formula: Using row i we obtain

detA =
n

∑
j=1

(−1)i+ jai j detA[i j] (6)

Sketch of proof: For A ∈Rn×n define ˜detA := ∑
n
j=1(−1)i+ ja1 j detA[i j] . We then show that ˜detA satisfies properties (1.), (2.),

(3.). I skip the details here.

This formula shows that we have the following property:

• detA is a linear function of each row of the matrix

Therefore it follows that ˜detA := detA> also satisfies properties (1.), (2.), (3.). Hence we must have
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Theorem 2. detA = detA>

The following result can be shown in a similar way:

Theorem 3. For A,B ∈ Rn×n we have det(AB) = (detA) · (detB).

Proof. For a fixed matrix B∈Rn×n let us define ˜detA := det(AB)/det(B). We can then show that the function ˜det : Rn×n→R
satisfies properties (1.), (2.), (3.). I skip the details.

Theorem 4. Assume that A ∈ Rn×n is nonsingular.

• Let b ∈ Rn. Then the linear system Ax = b has the solution x ∈ Rn given by “CRAMER’s rule”:

xi =
det
[
a(1), . . . ,a(i−1),b,a(i+1), . . . ,a(n)

]
detA

• M = A−1 has the elements

•
Mi j =

(−1)i+ j detA[ ji]

detA
Note: This uses A[ ji] and not A[i j]!!

Proof. Since Ax = b the columns A = [a(1), . . . ,a(n)] satisfy

x1a(1)+ · · ·+ xna(n) = b

x1a(1)+ · · ·+ xi−1a(i−1)+1 ·
(

xia(i)−b
)
+ xi+1a(i+1)+ · · ·+ xna(n) =~0

hence the matrix
[
a(1), . . . ,a(i−1),xia(i)−b,a(i+1), . . . ,a(n)

]
has linearly dependent columns and therefore determinant zero.

By property (3.) for column i we therefore have

0 = xi det
[
a(1), . . . ,a(n)

]
−det

[
a(1), . . . ,a(i−1),b,a(i+1), . . . ,a(n)

]
.

The columns of M = [m(1), . . . ,m(n)] satisfy Am( j) = e( j) where e( j) is the jth column of the identity matrix. Hence by
Cramer’s rule (

m( j)
)

i
= mi j =

det
[
a(1), . . . ,a(i−1),e( j),a(i+1), . . . ,a(n)

]
detA

=
(−1)i+ j detA[ ji]

detA
by using (5) with column i to find the determinant.

Note that these formulas are completely unpractical for n> 3 since detA consists n! terms. If we use Gaussian elimination
we can find x and A−1 using cn3 +O(n2) operations.
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