Solution of practice problems

1. We are given the data values $\frac{t_j}{y_j} \begin{vmatrix} -2 & -1 & 1 & 2 \\ 3 & 1 & 2 & 4 \end{vmatrix}$. Find the least squares fit with a function of the form $y = c_1 t + c_2 |t|$. We have $A = \begin{bmatrix} t_1 & |t_1| \\ \vdots & \vdots \\ t_4 & |t_4| \end{bmatrix} = \begin{bmatrix} -2 & 2 \\ -1 & 1 \\ 1 & 1 \\ 2 & 2 \end{bmatrix}$. We use the normal equations $(A^{\top}A)c = (A^{\top}y)$ which gives the linear system $\begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 17 \end{bmatrix}$. Hence $c = \begin{bmatrix} 0.3 \\ 1.7 \end{bmatrix}$, i.e., the least squares fit function is y = 0.3t + 1.7 |t|.

```
2.
```

- (a) For the matrix $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ find a decomposition $A = P \begin{bmatrix} 1 & s_{12} & s_{13} \\ 0 & 1 & s_{23} \\ 0 & 0 & 1 \end{bmatrix}$ where the columns of the matrix $P \in \mathbb{R}^{4\times3}$ are orthogonal on each other. Gram-Schmidt process: $p^{(1)} = a^{(1)} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$, $p^{(2)} = a^{(2)} - \frac{p^{(1)} \cdot a^{(2)}}{p^{(1)} \cdot p^{(1)}} p^{(1)} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} \\ \frac{1}{2} \\ 1 \\ 0 \end{bmatrix}$, $p^{(3)} = a^{(3)} - \frac{p^{(1)} \cdot a^{(3)}}{p^{(1)} \cdot p^{(1)}} p^{(1)} - \frac{p^{(2)} \cdot a^{(3)}}{p^{(2)} \cdot p^{(2)}} p^{(2)} = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix} - \frac{0}{2} \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} - \frac{1}{3/2} \begin{bmatrix} -\frac{1}{2} \\ \frac{1}{2} \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -\frac{1}{3} \\ -\frac{1}{3} \\ \frac{1}{3} \\ \frac{1}{3} \end{bmatrix}$ Hence we obtain $\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -\frac{1}{2} & \frac{1}{3} \\ 1 & \frac{1}{2} & -\frac{1}{3} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & \frac{1}{2} & 0 \\ 0 & 1 & \frac{2}{3} \\ 0 & 0 & 1 \end{bmatrix}$ (b) For a different matrix A we obtain the decomposition $A = \begin{bmatrix} -1 & 2 \\ 2 & -1 \\ 2 & 2 \end{bmatrix} \underbrace{ \begin{bmatrix} 1 & -2 \\ 0 & 1 \\ 0 \end{bmatrix}$ where the
 - columns of the matrix P are orthogonal on each other. Use this to find $c \in \mathbb{R}^2$ such that $\begin{vmatrix} Ac \begin{bmatrix} 5\\2\\5 \end{bmatrix} \end{vmatrix} \text{ is minimal. DO NOT TRY TO FIND THE MATRIX } A!$ Here $p^{(1)} = \begin{bmatrix} -1\\2\\2 \end{bmatrix}, p^{(2)} = \begin{bmatrix} 2\\-1\\2 \end{bmatrix}$. Find $\begin{bmatrix} d_1\\d_2 \end{bmatrix}$: $d_1 = \frac{p^{(1)} \cdot b}{p^{(1)} \cdot p^{(1)}} = \frac{9}{9} = 1,$ $d_2 = \frac{p^{(2)} \cdot b}{p^{(2)} \cdot p^{(2)}} = \frac{18}{9} = 2.$ Then solve Sc = d: $\begin{bmatrix} 1 & -2\\0 & 1 \end{bmatrix} \begin{bmatrix} c_1\\c_2 \end{bmatrix} = \begin{bmatrix} 1\\2 \end{bmatrix}$ which gives $c = \begin{bmatrix} 5\\2 \end{bmatrix}.$

- **3.** Use the expansion formula to find det $\begin{bmatrix} 0 & 2 & 3 & 5 \\ 2 & 7 & 8 & 9 \\ 0 & 2 & 3 & 1 \\ 0 & 4 & 0 & 0 \end{bmatrix}$. Hint: try to pick convenient rows or columns.
- $Method \ 1: \text{ First use column 1: } \det A = -2 \cdot \det \begin{bmatrix} 2 & 3 & 5 \\ 2 & 3 & 1 \\ 4 & 0 & 0 \end{bmatrix}. \text{ Then use row 3: } \det \begin{bmatrix} 2 & 3 & 5 \\ 2 & 3 & 1 \\ 4 & 0 & 0 \end{bmatrix} = 4 \cdot \det \begin{bmatrix} 3 & 5 \\ 3 & 1 \end{bmatrix}. \text{ Hence } \det A = (-2) \cdot 4 \cdot (3 15) = 96.$ $Method \ 2: \text{ First use row 4: } \det A = 4 \cdot \det \begin{bmatrix} 0 & 3 & 5 \\ 2 & 8 & 9 \\ 0 & 3 & 1 \end{bmatrix}. \text{ Then use column 1: } \det \begin{bmatrix} 0 & 3 & 5 \\ 2 & 8 & 9 \\ 0 & 3 & 1 \end{bmatrix} = (-2) \cdot \det \begin{bmatrix} 3 & 5 \\ 3 & 1 \end{bmatrix}. \text{ Hence } \det A = (-2) \cdot 4 \cdot (3 15) = 96.$ $4. \text{ Let } A = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 1 & -8 & 5 & 5 \\ 1 & -5 & 2 & 5 \\ 1 & -5 & 5 & 2 \end{bmatrix}. \text{ DO NOT TRY TO FIND THE CHARACTERISTIC POLYNOMIAL!}$
 - (a) Write down the matrix $M = A \lambda I$. Look at this matrix and try to guess a value λ which makes M singular (without using det M). Find a basis for the eigenspace for this eigenvalue. $\begin{bmatrix} 2 - \lambda & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} 2 - \lambda & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} 2 - \lambda & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} 2 - \lambda & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} 2 - \lambda & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} 2 - \lambda & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 &$

$$M = A - \lambda I = \begin{bmatrix} 2-\lambda & 0 & 0 & 0 & 0 \\ 1 & -8-\lambda & 5 & 5 \\ 1 & -5 & 2-\lambda & 5 \\ 1 & -5 & 5 & 2-\lambda \end{bmatrix}.$$
 We see that for $\lambda = 2$ the first row is
all zeros and M must be singular. Now we have to find a basis for the null space of $M = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & -10 & 5 & 5 \\ 1 & -5 & 5 & 0 \end{bmatrix}$: find the row echelon form:
$$\begin{bmatrix} 1 & -5 & 5 & 0 \\ 1 & -10 & 5 & 5 \\ 1 & -5 & 5 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -5 & 5 & 0 \\ 0 & -5 & 0 & 5 \\ 0 & 0 & -5 & 5 \\ 0 & 0 & 0 & 0 \end{bmatrix} = U.$$
 Hence rank $M = 3$ and dim null $A = 1$.
Solving $Uv = \vec{0}$ with $v_4 = 1$ gives $v = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}.$

(b) Find a basis for the eigenspace for $\lambda = -3$. We now have $M = A + 3I = \begin{vmatrix} 1 & 0 & 0 & 0 \\ 1 & -5 & 5 & 5 \\ 1 & -5 & 5 & 5 \\ 1 & -5 & 5 & 5 \end{vmatrix}$ and

we have to find a basis for the null space. We find the row echelon form: $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -5 & 5 & 5 \\ 0 & -5 & 5 & 5 \\ 0 & -5 & 5 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -5 & 5 & 5 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = U. \text{ Hence rank } M = 2 \text{ and dim null } A = 2.$$

Solving $Uv = \vec{0}$ with $v_3 = 1$, $v_4 = 0$ gives $v = \begin{bmatrix} 0\\1\\1\\0 \end{bmatrix}$. Solving $Uv = \vec{0}$ with $v_3 = 0$, $v_4 = 1$ gives $v = \begin{bmatrix} 0\\1\\0\\1 \end{bmatrix}.$

(c) The matrix A has only two different eigenvalues: the eigenvalue from (a), and $\lambda = -3$. Is the matrix A diagonizable? Explain!

There are altogether three linearly independent eigenvectors: $\begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$. Since we don't have n = 4 linearly independent eigenvectors the matrix A is NOT.

5. Find all eigenvalues and eigenvectors for the matrices

(i)
$$\begin{bmatrix} 1 & 2 \\ 1 & -1 \end{bmatrix}$$
, (ii) $\begin{bmatrix} 1 & 2 \\ -5 & 3 \end{bmatrix}$, (iii) $\begin{bmatrix} 1 & -1 \\ 1 & 3 \end{bmatrix}$, (iv) $A = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$

Which of these matrices are diagonalizable?

(i):
$$p(\lambda) = \lambda^2 - 3$$
, $\lambda_1 = \sqrt{3}$, $v^{(1)} = \begin{bmatrix} 1 + \sqrt{3} \\ 1 \end{bmatrix}$, $\lambda_2 = -\sqrt{3}$, $v^{(2)} = \begin{bmatrix} 1 - \sqrt{3} \\ 1 \end{bmatrix}$
(ii): $p(\lambda) = \lambda^2 - 4\lambda + 13$, $\lambda_1 = 2 + 3i$, $v^{(1)} = \begin{bmatrix} 2 \\ 1 + 3i \end{bmatrix}$, $\lambda_1 = 2 - 3i$, $v^{(1)} = \begin{bmatrix} 2 \\ 1 - 3i \end{bmatrix}$
(iii): $p(\lambda) = \lambda^2 - 4\lambda + 4$, $\lambda_1 = \lambda_2 = 2$, $v^{(1)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ (only one eigenvector exists!)
(iv): $p(\lambda) = (3 - \lambda)^2$, $\lambda_1 = \lambda_2 = 3$, $v^{(1)} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $v^{(2)} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ (or any other basis of \mathbb{C}^2)
The matrices (i), (ii), (iv) are diagonizable. The matrix (iii) is NOT diagonizable.