
Dot product and linear least squares problems

Dot Product

For vectors u,v ∈ Rn we define the dot product

u · v = u1v1 + · · ·+unvn

Note that we can also write this as u>v = [u1, . . . ,un]

 v1
...

vn

= u1v1 + · · ·+unvn.

The dot product u ·u = u2
1 + · · ·+u2

n gives the square of the Euclidean length of the vector, a.k.a. norm of the vector:

‖u‖= (u ·u)1/2 =
(
u2

1 + · · ·+u2
n
)1/2

Theorem 1 (Cauchy-Schwarz inequality). For a,b ∈ Rn we have

|a ·b| ≤ ‖a‖‖b‖ (1)

Proof. Step 1 for vectors with ‖a‖= 1 and ‖b‖= 1: Then

0≤ (b−a) · (b−a) = b ·b−2a ·b+a ·a
2a ·b≤ a ·a+b ·b = 1+1

Hence a ·b≤ 1. Using (b+a) instead of (b−a) gives −2a ·b≤ 2, i.e., a ·b≥−1.
Step 2 for general vectors a, b: If a =~0 or b =~0 we see that (1) obviously holds. If both vectors are different from~0 let
u := a/‖a‖ and v := b/‖b‖, then u · v = a·b

‖a‖‖b‖ . Since ‖u‖= 1 and ‖v‖= 1 we get from step 1 that |u · v| ≤ 1.

Consider a triangle with the three points~0, a, b. Then the vector from a to b is given by c = b− a, and the lengths of the
three sides of the triangle are ‖a‖, ‖b‖, ‖c‖.
Let θ denote the angle between the vectors a and b. Then the law of cosines tells us that

‖c‖2 = ‖a‖2 +‖b‖2−2‖a‖‖b‖cosθ

Multiplying out ‖c‖2 = (b−a) · (b−a) gives

‖c‖2 = ‖a‖2 +‖b‖2−2a ·b

By comparing the last two equations we obtain

a ·b = ‖a‖‖b‖cosθ

If a and b are different from~0 we have

cosθ =
a ·b
‖a‖‖b‖

This tells us how to compute the angle θ between two vectors:

q :=
a ·b
‖a‖‖b‖

, θ := cos−1 q

Because of (1) we have −1≤ q≤ 1, hence the inverse cosine function gives 0≤ θ ≤ π:

q = 1 ⇐⇒ θ = 0, i.e., a,b point in the same direction

q = 0 ⇐⇒ θ =
π

2
, i.e., a,b are orthogonal

q =−1 ⇐⇒ θ = π, i.e. a,b point in opposite directions
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Example 1. Find the angle between the vectors a =

 1
1
0

 and b =

 0
1
1

: We get

q :=
a ·b
‖a‖‖b‖

=
1√
2
√

2
=

1
2
, θ := cos−1 q = cos−1 1

2
=

π

3

1

a

x
2

0.5

0

b

1

0.5

x
1

0

0

0.5

1

x
3

We say vectors a,b ∈ Rn are orthogonal or a⊥ b

a⊥ b ⇐⇒ a ·b = 0

We say a vector a ∈ Rn is orthogonal on a subspace V of Rn or a⊥V

a⊥V ⇐⇒ a · v = 0 for all v ∈V

Orthogonal projection onto a line

Consider a 1-dimensional subspace V = span{v} of Rn given by a vector v ∈ Rn. This is a line through the origin.

For a given point b ∈ Rn we want to find the point u ∈V which is closest to the point b:

Find u ∈V such that ‖u−b‖ is minimal

The point u must have the following properties:

• u ∈V , i.e., u = cv with some unknown c ∈ R

• u−b⊥V , i.e., v · (u−b) = 0

By plugging u = cv into the second property we get by multiplying out

v · (cv−b) = 0 ⇐⇒ c(v · v)− (v ·b) = 0 ⇐⇒ c =
v ·b
v · v

Therefore the point u on the line given by v which is closest to the point b is given by

u =
v ·b
v · v

v

We say that u is the orthogonal projection of the point b onto the line given by v and use the notation

prv b =
v ·b
v · v

v
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Orthogonal projection onto a 2-dimensional subspace V

Consider a 2-dimensional subspace V = span
{

v(1),v(2)
}

of Rn given by two linearly independent vectors v(1),v(2) ∈ Rn.
This is a plane through the origin.

For a given point b ∈ Rn we want to find the point u ∈V which is closest to the point b:

Find u ∈V such that ‖u−b‖ is minimal

The point u must have the following properties:

• u ∈V , i.e., u = c1v(1)+ c2v(2) with some unknowns c1,c2 ∈ R

• u−b⊥V , i.e., v(1) · (u−b) = 0 and v(2) · (u−b) = 0

By plugging u = c1v(1)+c2v(2) into the second property we obtain a linear system of two equations for two unknowns which
we can then solve.

We can use the k×2 matrix A = [v(1),v(2)] to express the two properties:

• u ∈V , i.e., u = Ac with an unknown vector c =
[

c1
c2

]
∈ R2

• u−b⊥V , i.e., v(1)>(u−b) = 0 and v(2)>(u−b) = 0, i.e.,
[

v(1)>

v(2)>

]
(u−b) =

[
0
0

]
or

A>(u−b) =
[

0
0

]
By plugging u = Ac into the second property we obtain

A>(Ac−b) = 0

A>Ac = A>b

These are the so-called normal equations (since they express that u−b is orthogonal or normal on the subspace V .

This is how to find the point u ∈V which is closest to b:

• find the matrix M := A>A ∈ R2×2 and the vector g := A>b ∈ R2

• solve the 2×2 linear system Mc = g for c ∈ R2

• let u := Ac

Example 2. Consider the plane V = span


 −1

2
1

 ,
 1

1
1

. Find the point u ∈V which is closest to b =

 0
1
3

.

Let A =

 −1 1
2 1
1 1

. Then

M = A>A =

[
6 2
2 3

]
, g =

[
5
4

]
Solving the linear system

[
6 2
2 3

][
c1
c2

]
=

[
5
4

]
gives c =

[ 1
2
1

]
.

Hence the closest point is u = Ac =

 1
2
2
3
2

. We can check that this is correct by finding the difference vector r = u−b and

checking v(1) · r = 0 and v(2) · r = 0: We have

r = Ac−b =

 1
2
1
−3

2

 v(1) · r =

 −1
2
1

 ·
 1

2
1
−3

2

= 0, v(2) · r =

 1
1
1

 ·
 1

2
1
−3

2

= 0.
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Orthogonal projection onto a k-dimensional subspace V a.k.a. “least squares problem”

Consider a k-dimensional subspace V = span
{

v(1), . . . ,v(k)
}

of Rn given by k linearly independent vectors v(1), . . . ,v(k) ∈Rn.
I.e., the vectors v(1), . . . ,v(k) form a basis for the subspace V .

For a given point b ∈ Rn we want to find the point u ∈V which is closest to the point b:

Find u ∈V such that ‖u−b‖ is minimal (2)

Let us define the n× k matrix A =
[
v(1), . . . ,v(k)

]
.

The point u must have the following properties:

• u ∈V , i.e., u = c1v(1)+ · · ·+ ckv(k) = Ac with some unknown vector c ∈ Rk

• u−b⊥V , i.e., v(1) · (u−b) = 0,. . . ,v(k) · (u−b) = 0, i.e.,

 v(1)>
...

v(k)>

(u−b) =

 0
...
0

 or

A>(u−b) =

 0
...
0


By plugging u = Ac into the second property we obtain

A>(Ac−b) = 0 (3)

A>Ac = A>b (4)

These are the so-called normal equations (since they express that u−b is “orthogonal” or “normal” on the subspace V .)

This is how to find the point u ∈V which is closest to b:
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• find the matrix M := A>A ∈ Rk×k and the vector g := A>b ∈ Rk

• solve the k× k linear system Mc = g for c ∈ Rk

• let u := Ac

Note that the normal equations (4) always have a unique solution:

Theorem 2. Assume the matrix A ∈ Rn×k with k ≤ n has linearly independent columns (i.e., rankA = k). Then the matrix
M = A>A is nonsingular.

Proof. We have to show that Mc =~0 implies c =~0.
Assume we have c ∈ Rk such that Mc =~0. Then we can multiply from the left with c> and get with y := Ac

0 = c>Mc = c>A>Ac = y>y = ‖y‖2

as y> = c>A>. Since ‖y‖= 0 we have y = Ac =~0. This means that we have a linear combination of the columns of A which
gives the zero vector. Since by assumption the columns of A are linearly independent we must have c =~0.

So solving the normal equations gives us a unique c ∈ Rn. We then get by u = Ac a point on the subspace V . We now want
to formally prove that this point u ∈V is really the unique answer to our minimization problem (2).

Theorem 3. Assume the matrix A ∈Rn×k with k≤ n has linearly independent columns (i.e., rankA = k). Then for any given
b ∈ Rn the minimization problem

find c ∈ Rk such that ‖Ac−b‖ is minimal (5)

has a unique solution which is obtained by solving the normal equations A>Ac = A>b.

Proof. Let c ∈ Rk be the unique solution of the normal equations. Consider now c̃ = c+ d where d ∈ Rk is nonzero. We
then have

‖Ac̃−b‖2 = ‖Ac−b+Ad‖2 =
(
(Ac−b)+Ad

)
·
(
(Ac−b)+Ad

)
= (Ac−b) · (Ac−b)+2(Ad) · (Ac−b)+(Ad) · (Ad)

We have for the middle term (Ad) · (Ac−b) = (Ad)>(Ac−b) = d>A>(Ac−b) = 0 by the normal equations (3). Hence

‖Ac̃−b‖2 = ‖Ac−b‖2 +‖Ad‖2

Since d 6=~0 we have Ad 6=~0 since the columns of A are linearly independent, and hence ‖Ad‖ > 0. This means that for
any vector c̃ different from c we get ‖Ac̃−b‖> ‖Ac−b‖, i.e., the vector c from the normal equations is the unique solution
of (5).

Least squares problem with orthogonal basis

For a least squares problem we are given n linearly independent vectors a(1), . . . ,a(n) ∈ Rm which form a basis for the
subspace V = span{a(1), . . . ,a(n)}. For a given right hand side vector b ∈ Rm we want to find u ∈ V such that ‖u−b‖ is
minimal. We can write u = c1a(1)+ · · ·+ cna(n) = Ac with the matrix A =

[
a(1), . . . ,a(n)

]
∈ Rm×n. Hence we want to find

c ∈ Rn such that ‖Ac−b‖ is minimal.

Solving this problem is much simpler if we have an orthogonal basis for the subspace V : Assume we have vectors
p(1), . . . , p(n) such that

• span
{

p(1), . . . , p(n)
}
=V

• the vectors are orthogonal on each other: p(i) · p( j) = 0 for i 6= j
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We can then write u = d1 p(1)+ · · ·+dn p(n) = Pd with the matrix P = [p(1), . . . , p(n)] ∈Rm×n. Hence we want to find d ∈Rn

such that ‖Pd−b‖ is minimal. The normal equations for this problem give

(P>P)d = P>b (6)

where the matrix

P>P =

 p(1)>
...

p(n)>

[p(1), . . . , p(n)
]
=

 p(1) · p(1) · · · p(1) · p(n)
...

...
p(n) · p(1) · · · p(n) · p(n)

=


p(1) · p(1) 0

. . .

0 p(n) · p(n)


is now diagonal since p(i) · p( j) = 0 for i 6= j. Therefore the normal equations (6) are actually decoupled(

p(1) · p(1)
)

d1 = p(1) ·b
...(

p(n) · p(n)
)

dn = p(n) ·b

and have the solution

di =
p(i) ·b

p(i) · p(i)
for i = 1, . . . ,n

Gram-Schmidt orthogonalization

We still need a method to construct from a given basis a(1), . . . ,a(n) an orthogonal basis p(1), . . . , p(n).

Given n linearly independent vectors a(1), . . . ,a(n) ∈ Rm we want to find vectors p(1), . . . , p(n) such that

• span
{

p(1), . . . , p(n)
}
= span

{
a(1), . . . ,a(n)

}
• the vectors are orthogonal on each other: p(i) · p( j) = 0 for i 6= j

Step 1: p(1) := a(1)

Step 2: p(2) := a(2)− s12 p(1) where we choose s12 such that p(1) · p(2) = 0:

p(1) ·a(2)− s12 p(1) · p(1) = 0 ⇐⇒ s12 =
p(1) ·a(2)

p(1) · p(1)

Step 3: p(3) := a(3)− s13 p(1)− s23 p(2) where we choose s13, s23 such that

• p(1) · p(3) = 0, i.e., p(1) ·a(3)− s13 p(1) · p(1)− s23 p(1) · p(2)︸ ︷︷ ︸
0

= 0, hence s13 =
p(1) ·a(3)

p(1) · p(1)

• p(2) · p(3) = 0, i.e., p(2) ·a(3)− s13 p(2) · p(1)︸ ︷︷ ︸
0

−s23 p(2) · p(2) = 0, hence s23 =
p(2) ·a(3)

p(2) · p(1)

...

Step n: p(n) := a(n)− s1n p(1)−·· ·− sn−1,n p(n−1) where we choose s1n, . . . ,sn−1,n such that p( j) · p(n) = 0 for j = 1, . . . ,n−1
which yields

s jn =
p( j) · p(n)

p( j) · p( j)
for j = 1, . . . ,n−1
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Example: We are given the vectors a(1) =


1
1
1
1

, a(2) =


0
1
2
3

, a(3) =


0
1
4
9

. Use Gram-Schmidt orthogonalization to

find an orthogonal basis p(1), p(2), p(3) for the subspace V = span
{

a(1),a(2),a(3)
}

.

Step 1: p(1) := a(1) =


1
1
1
1



Step 2: p(2) := a(2)− p(1) ·a(2)

p(1) · p(1)
p(1) =


0
1
2
3

− 6
4


1
1
1
1

=


−3

2
−1

2
1
2
3
2



Step 3: p(3) := a(3)− p(1) ·a(3)

p(1) · p(1)
p(1)− p(2) ·a(3)

p(2) · p(2)
p(2) =


0
1
4
9

− 14
4


1
1
1
1

− 15
5


−3

2
−1

2
1
2
3
2

=


1
−1
−1
1


Note that we have

a(1) = p(1)

a(2) = p(2)+
6
4

p(1)

a(3) = p(3)+
14
4

p(1)+
15
5

p(2)

which we can write as

[
a(1),a(2),a(3)

]
=
[

p(1), p(2), p(3)
] 1 6

4
14
4

0 1 15
5

0 0 1




1 0 0
1 1 1
1 2 4
1 3 9


︸ ︷︷ ︸

A

=


1 −1.5 1
1 −0.5 −1
1 0.5 −1
1 1.5 1


︸ ︷︷ ︸

P

 1 1.5 3.5
0 1 3
0 0 1


︸ ︷︷ ︸

S

In the general case we have

a(1) = p(1)

a(2) = p(2)+ s12 p(1)

a(3) = p(3)+ s13 p(1)+ s13 p(2)

...

a(n) = p(n)+ s1n p(1)+ · · ·+ sn−1,n p(n−1)

which we can write as

[
a(1),a(2), . . . ,a(n)

]
=
[

p(1), p(2), . . . , p(n)
]


1 s12 · · · s1n

0 1
. . .

...
...

. . . . . . sn−1,n
0 · · · 0 1


Therefore we obtain a decomposition A = PS where
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• P ∈ Rm×n has orthogonal columns

• S ∈ Rn×n is upper triangular, with 1 on the diagonal.

Note that the vectors p(1), . . . , p(n) are different from~0:

Assume, e.g., that p(3) = a(3)− s13 p(1)− s23 p(2) =~0, then a(3) = s13 p(1)+ s23 p(2) is in span
{

p(1), p(2)
}
= span

{
a(1),a(2)

}
.

This is a contradiction to the assumption that a(1),a(2),a(3) are linearly independent.

Solving the least squares problem ‖Ac−b‖= min using orthogonalization

We are given A ∈ Rm×n with linearly independent columns, b ∈ Rn. We want to find c ∈ Rn such that ‖Ac−b‖= min.

From the Gram-Schmidt method we get A = PS, hence we want to find c such that∥∥P Sc︸︷︷︸
d

−b
∥∥= min

This gives the following method for solving the least squares problem:

• use Gram-Schmidt to find decomposition A = PS

• solve ‖Pd−b‖= min: di :=
p(i) ·b

p(i) · p(i)
for i = 1, . . . ,n

• solve Sc = d by back substitution

Example: Solve the least squares problem ‖Ac−b‖= min for A =


1 0 0
1 1 1
1 2 4
1 3 9

, b =


0
1
4
7

.

• Gram-Schmidt gives A =


1 −1.5 1
1 −0.5 −1
1 0.5 −1
1 1.5 1


︸ ︷︷ ︸

P

 1 1.5 3.5
0 1 3
0 0 1


︸ ︷︷ ︸

S

(see above)

• d1 =
p(1) ·b

p(1) · p(1)
=

12
4

= 3, d2 =
p(2) ·b

p(2) · p(2)
=

12
5

= 2.4, d3 =
p(3) ·b

p(3) · p(3)
=

2
4
= 0.5

• solving

 1 1.5 3.5
0 1 3
0 0 1

 c1
c2
c3

=

 3
2.4
0.5

 by back substitution gives c3 = 0.5, c2 = 0.9, c1 =−1.1

Hence the solution of our least squares problem is the vector c =

 −1.1
0.9
0.5

.

Note: If you want to solve a least squares problem by hand with pencil and paper, it is usually easier to use the normal
equations. But for numerical computation on a computer using orthogonalization is usually more efficient and more accurate.

Finding an orthonormal basis q(1), . . . ,q(n): the QR decomposition

The Gram-Schmidt method gives an orthogonal basis p(1), . . . , p(n) for V = span
{

a(1), . . . ,a(n)
}

Often it is convenient to have a so-called orthonormal basis q(1), . . . ,q(n) where the basis vectors have length 1: Define

q( j) =
1∥∥p( j)
∥∥ p( j) for j = 1, . . . ,n

then we have
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• span
{

q(1), . . . ,q(n)
}
=V

• q( j) ·q(k) =

{
1 for j = k
0 otherwise

This means that the matrix Q = [q(1), . . . ,q(n)] satisfies Q>Q = I where I is the n×n identity matrix.

Since p( j) =
∥∥p( j)

∥∥q( j) we have

a(1) =
∥∥∥p(1)

∥∥∥q(1)︸ ︷︷ ︸
r11

a(2) =
∥∥∥p(2)

∥∥∥q(2)︸ ︷︷ ︸
r22

+s12

∥∥∥p(1)
∥∥∥︸ ︷︷ ︸

r12

p(1)

...

a(n) =
∥∥∥p(n)

∥∥∥q(n)︸ ︷︷ ︸
rnn

+s1n

∥∥∥p(1)
∥∥∥︸ ︷︷ ︸

r1n

p(1)+ · · ·+ sn−1,n

∥∥∥p(n−1)
∥∥∥︸ ︷︷ ︸

rn−1,n

q(n−1)

which we can write as

[
a(1),a(2), . . . ,a(n)

]
=
[
q(1),q(2), . . . ,q(n)

]


r11 r12 · · · r1n

0 r22
. . .

...
...

. . . . . . rn−1,n
0 · · · 0 rnn


A = QR

where the n×n matrix R is given by  row 1 of R
...

row nof R

=


∥∥p(1)

∥∥(row 1 of R)
...∥∥p(n)

∥∥(row nof R)


We obtain the so-called QR decomposition A = QR where

• the matrix Q ∈ Rm×n has orthonormal columns, rangeQ = rangeA

• the matrix R ∈ Rn×n is upper triangular, with nonzero diagonal elements

Example: In our example we have p(1) · p(1) = 4, p(2) · p(2) = 5, p(3) · p(3) = 4, hence

q(1) =
1
2

p(1) =


.5
.5
.5
.5

 , q(2) =
1√
5

p(2) =
1√
5


−1.5
−.5
.5

1.5

 , q(3) =
1
2

p(3) =


.5
−.5
−.5
.5


and we obtain the QR decomposition

1 0 0
1 1 1
1 2 4
1 3 9

=


.5 −1.5/

√
5 .5

.5 −.5/
√

5 −.5
.5 .5/

√
5 −.5

.5 1.5/
√

5 .5


 2 3 7

0
√

5 3
√

5
0 0 2


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In Matlab we can find the QR decomposition using [Q,R]=qr(A,0)

This works for symbolic matrices

>> A = sym([1 1 1 1; 0 1 2 3; 0 1 4 9])’;
>> [Q,R] = qr(A,0)
Q =
[ 1/2, -(3*5^(1/2))/10, 1/2]
[ 1/2, -5^(1/2)/10, -1/2]
[ 1/2, 5^(1/2)/10, -1/2]
[ 1/2, (3*5^(1/2))/10, 1/2]
R =
[ 2, 3, 7]
[ 0, 5^(1/2), 3*5^(1/2)]
[ 0, 0, 2]

and it works for numerical matrices

>> A = [1 1 1 1; 0 1 2 3; 0 1 4 9]’;
>> [Q,R] = qr(A,0)
Q =

-0.5000 0.6708 0.5000
-0.5000 0.2236 -0.5000
-0.5000 -0.2236 -0.5000
-0.5000 -0.6708 0.5000

R =
-2.0000 -3.0000 -7.0000

0 -2.2361 -6.7082
0 0 2.0000

Note that for numerical matrices Matlab returned the basis −q(1),−q(2),q(3) (which is also an orthonormal basis) and hence
rows 1 and 2 of the matrix R is (−1) times our previous matrix R.

If we want to find an orthonormal basis for rangeA and an orthonormal basis for the orthogonal complement (rangeA)⊥ =
nullA> we can use the command [Qh,Rh]=qr(A) : It returns matrices Q̂ ∈ Rm×m and R̂ ∈ Rm×n with

Q̂ =


basis for rangeA︷ ︸︸ ︷
q(1), . . . ,q(n),

basis for (rangeA)⊥︷ ︸︸ ︷
q(n+1), . . . ,q(m)

 , R̂ =


R

0 · · · 0
...

...
0 · · · 0


m−nrows of zeros

>> A = [1 1 1 1; 0 1 2 3; 0 1 4 9]’;
>> [Qh,Rh] = qr(A)
Qh =

-0.5000 0.6708 0.5000 0.2236
-0.5000 0.2236 -0.5000 -0.6708
-0.5000 -0.2236 -0.5000 0.6708
-0.5000 -0.6708 0.5000 -0.2236

Rh =
-2.0000 -3.0000 -7.0000

0 -2.2361 -6.7082
0 0 2.0000
0 0 0

But in most cases we only need an orthonormal basis for rangeA and we should use [Q,R]=qr(A,0) (which Matlab calls
the “economy size” decomposition).
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Solving the least squares problem ‖Ac−b‖= min using the QR decomposition

If we use an orthonormal basis q(1), . . . ,q(n) for span{a(1), . . . ,a(n)} we have Q>Q = I. The solution of ‖Qd−b‖ = min is
therefore given by the normal equations (Q>Q)d = Q>b, i.e., we obtain d = Q>b.

This gives the following method for solving the least squares problem:

• find the QR decomposition A = QR

• let d = Q>b

• solve Rc = d by back substitution

In Matlab we can do this as follows:

[Q,R] = qr(A,0);
d = Q’*b;
c = R\d;

In our example we have

>> A = [1 1 1 1; 0 1 2 3; 0 1 4 9]’; b = [0;1;4;7];
>> [Q,R] = qr(A,0);
>> d = Q’*b;
>> c = R\d
c =

-0.1000
0.9000
0.5000

This works for both numerical and symbolic matrices.

For a numerical matrix A we can use the shortcut c=A\y which actually uses the QR decomposition to find the solution of
‖Ac−b‖= min

>> A = [1 1 1 1; 0 1 2 3; 0 1 4 9]’; b = [0;1;4;7];
>> c = A\b
c =

-0.1000
0.9000
0.5000

Warning: This shortcut does not work for symbolic matrices:

>> A = sym([1 1 1 1; 0 1 2 3; 0 1 4 9])’; b = sym([0;1;4;7]);
>> c = A\b
Warning: The system is inconsistent. Solution does not exist.
c =
Inf
Inf
Inf
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