Dot product and linear least squares problems

Dot Product

For vectors u,v € R" we define the dot product

’u'v:u1v1—|—~--—|—unvn

Vi

Note that we can also write this as u "

v=1[ur,...,uy) | | =wvi+--Fupvy.
Vn

The dot product u - u = u% + -+ u? gives the square of the Euclidean length of the vector, a.k.a. norm of the vector:

lull = ()2 = (1 4 - 2) 2
Theorem 1 (Cauchy-Schwarz inequality). For a,b € R" we have
[a-b] < |la] [Ip]] (1)

Proof. Step 1 for vectors with ||a|| =1 and ||| = 1: Then
0<(b—a)-(b—a)=b-b—2a-b+a-a
2a-b<a-a+b-b=1+1
Hence a-b < 1. Using (b +a) instead of (b —a) gives —2a-b <2,ie.,a-b>—1.

Step 2 for general vectors a, b: If a = 0 or b = 0 we see that (1) obviously holds. If both vectors are different from 0 let
u:=a/lallandv:=b/|b|, thenu-v= ”a‘fﬁ’b”. Since ||u|| = 1 and ||v|| = 1 we get from step 1 that |u-v| < 1. O

Consider a triangle with the three points 0, a, b. Then the vector from a to b is given by ¢ = b — a, and the lengths of the
three sides of the triangle are ||a|l, ||p]|, ||c]|-

Let 0 denote the angle between the vectors a and b. Then the law of cosines tells us that
2 2 2
lell” = llall” +lI2]" = 2[al[ [|b]| cos &
Multiplying out ||c||* = (b—a) - (b—a) gives
2 2 2
lell” = llall”+[|&]]" = 2a-b

By comparing the last two equations we obtain

a-b=||al|||b]|cos 6|

If @ and b are different from 0 we have

a-b
all lI5]|

This tells us how to compute the angle 6 between two vectors:
a- b _1
q:= , 0:=cos ¢
lall 1]

Because of (1) we have —1 < g < 1, hence the inverse cosine function gives 0 < 0 < 7:

cosO =

q=1<+=0=0, i.e.,a,bpointin the same direction
T .
g=0 <= 0= 7 i.e., a, b are orthogonal

qg=-1 <= 0=m, i.e.a,bpointin opposite directions



1

Example 1. Find the angle between the vectorsa= | 1 [ andb= | 1 |: We get
0 1
ab ! ! 6 :=cos ™! cos™! Lz
q:= = = -, = q= ==
lalllloll - v2v2 2 2 3

0.5 0.5

We say vectors a,b € R" are orthogonal ora 1 b
alb << ab=0
We say a vector a € R" is orthogonal on a subspace V of R" ora 1 V

alV <<= a-v=0 forallveV

Orthogonal projection onto a line

Consider a 1-dimensional subspace V = span {v} of R” given by a vector v € R". This is a line through the origin.

For a given point b € R" we want to find the point # € V which is closest to the point b:

‘ Find u € V such that ||u — b|| is minimal

The point # must have the following properties:
e ucV,ie., u=cvwith some unknown c € R
e u—blV,ie,v-(u—>b)=0
By plugging u = cv into the second property we get by multiplying out
v-(ev=b)=0 <<= c(vv)=(v-b)=0 <<= = :—IZ

Therefore the point u on the line given by v which is closest to the point b is given by

v-b
u=—v
ARY

We say that u is the orthogonal projection of the point » onto the line given by v and use the notation

b
prvb:v—v
vy




Orthogonal projection onto a 2-dimensional subspace V

Consider a 2-dimensional subspace V = span {v(l),v(2)} of R” given by two linearly independent vectors v(!),v(2) € R”.
This is a plane through the origin.

For a given point b € R" we want to find the point u € V which is closest to the point b:

‘ Find u € V such that ||u — b|| is minimal

The point # must have the following properties:
e ucV,ie,u= clv(l) —|—czv(2) with some unknowns cy,c» € R
e u—b LV, ie,vD - (u—b)=0and v® . (u—b)=0

By plugging u = c;v(!) +¢,v?) into the second property we obtain a linear system of two equations for two unknowns which
we can then solve.

We can use the k X 2 matrix A = [v(l) , v(z)] to express the two properties:

. . (6
e ucV,ie. u=Ac with an unknown vector ¢ = [ Cl } c R?
2

e u—b 1V, ie, VT (u—b)=0and v® T (u—b) =0, 1ie., [ :(m } (u—b) = [ 0 ] or

By plugging u = Ac into the second property we obtain

AT (Ac—b)=0

ATAc=A"b

These are the so-called normal equations (since they express that u — b is orthogonal or normal on the subspace V.

This is how to find the point u € V which is closest to b:
e find the matrix M := ATA € R>*? and the vector g :=A'b € R?

e solve the 2 x 2 linear system Mc = g for ¢ € R?

o letu:=Ac
-1 1
Example 2. Consider the plane V = span 2 |, 1 . Find the point u € V which is closesttob= | 1
1 1 3
-1 1
LetA=| 2 1 |.Then
1 1

. 62 [s
M_AA_[23’ S

: : 6 2][a ] [5] .. [4%
Solving the linear system [ ) 3 } [ o ] = [ 4 } gives ¢ = [ L
1
2
Hence the closest pointis u = Ac = | 2 |. We can check that this is correct by finding the difference vector r = u — b and
3
2
checking v\ - r = 0 and v(?) - r = 0: We have
1 1 1
1 1 1 1 1
2 2 2
r=Ac—b=| 1 vWor=1 2 1 | =0, wWDr=1]1 1 | =o0.
_3 1 _3 1 _3
2 2 2



Orthogonal projection onto a k-dimensional subspace V a.k.a. “least squares problem”

Consider a k-dimensional subspace V = span {v(!),...,v¥)} of R" given by k linearly independent vectors v(!),... vk € R",
I.e., the vectors v(l), cey v(K) form a basis for the subspace V.

For a given point b € R" we want to find the point u € V which is closest to the point b:

‘ Find u € V such that ||u — b|| is minimal (2)

Let us define the n X k matrix A = [v(l), .. .,v(k)] .
The point # must have the following properties:

e ucV,ie,u= clv(l) + - —|—ckv(k) = Ac with some unknown vector ¢ € R¥

v(DT 0
e u—b1V,ie, v (u=b)=0,...v% . (u—b)=0,ie., : (u—b)y=1|: | or
v T 0
0
Al(u=b)=| :
0
By plugging u = Ac into the second property we obtain
AT(Ac—b)=0 3)

ATAc=A"b “4)

These are the so-called normal equations (since they express that u — b is “orthogonal” or “normal” on the subspace V.)

This is how to find the point « € V which is closest to b:



e find the matrix M := ATA € R*¥ and the vector g := A"h € R¥
e solve the k x k linear system Mc = g for ¢ € R¥
o letu:=Ac

Note that the normal equations (4) always have a unique solution:

Theorem 2. Assume the matrix A € R"™* with k < n has linearly independent columns (i.e., rankA = k). Then the matrix
M = ATA is nonsingular.

Proof. We have to show that Mc = 0 implies ¢ = 0.
Assume we have ¢ € R¥ such that Mc = 0. Then we can multiply from the left with ¢ " and get with y := Ac

0=c Mc=c"ATAc=y"y=|y|?

asy' =cTAT. Since ||y]| = 0 we have y = Ac = 0. This means that we have a linear combination of the columns of A which
gives the zero vector. Since by assumption the columns of A are linearly independent we must have ¢ = 0. O
So solving the normal equations gives us a unique ¢ € R". We then get by u = Ac a point on the subspace V. We now want

to formally prove that this point u# € V is really the unique answer to our minimization problem (2).

Theorem 3. Assume the matrix A € R"™K with k < n has linearly independent columns (i.e., rankA = k). Then for any given
b € R" the minimization problem
find ¢ € R such that ||Ac — b|| is minimal ®)

has a unique solution which is obtained by solving the normal equations AT Ac = AT b.

Proof. Let ¢ € R¥ be the unique solution of the normal equations. Consider now & = ¢ +d where d € R¥ is nonzero. We
then have

1AZ— b|)* = |Ac — b+ Ad|? = ((Ac—b)+Ad> : ((Ac—b)+Ad)
= (Ac—D)-(Ac—b)+2(Ad) - (Ac — D) + (Ad) - (Ad)
We have for the middle term (Ad) - (Ac — b) = (Ad) " (Ac —b) = d"AT (Ac — b) = 0 by the normal equations (3). Hence
lA¢ —b|)* = |Ac — b* +||Ad|®

Since d # 0 we have Ad # 0 since the columns of A are linearly independent, and hence ||Ad|| > 0. This means that for
any vector ¢ different from ¢ we get ||[A¢ — b|| > ||Ac — b, i.e., the vector ¢ from the normal equations is the unique solution
of (5). O

Least squares problem with orthogonal basis

For a least squares problem we are given n linearly independent vectors a''),...,a™ € R™ which form a basis for the
subspace V = span{a'!),...,a}. For a given right hand side vector b € R” we want to find u € V such that ||u—b|| is
minimal. We can write u = cja'!) + -+ + ¢,a™ = Ac with the matrix A = [a!),...,a”] € R"™*". Hence we want to find

¢ € R" such that ||Ac — b|| is minimal.

Solving this problem is much simpler if we have an orthogonal basis for the subspace V: Assume we have vectors
p(l),...,p(”) such that

° span{p(]),...,p(”>} =V

e the vectors are orthogonal on each other: p{) . pl) =0 for i  j



We can then write u = d; p(V) + - - - +d, p") = Pd with the matrix P = [p(l),. .. ,p(”)] € R™", Hence we want to find d € R"

such that ||Pd — b|| is minimal. The normal equations for this problem give

(P'"PYd=P'"b
where the matrix
p(l)T p(l) p(l) p(l) .p(n) p(l) p(l) O
P'P= : [p(l),...,p(”)] = : : =
(m)T (n). (1) ... (n) . ,(n)
p P p p p O p(n) _p(n)

is now diagonal since p) - p{/) = 0 for i # j. Therefore the normal equations (6) are actually decoupled

(p(n .pm)dl —pM.p

and have the solution

. p
di= p' . fori=1,...,n
p(l) p(l)
Gram-Schmidt orthogonalization
We still need a method to construct from a given basis a(!), ..., a an orthogonal basis p(!),..., p(.
Given n linearly independent vectors a(!), ... a™ € R™ we want to find vectors pt!), ..., p(") such that

. span{p(l),...,p(")} = span{a(l),...,a(")}

e the vectors are orthogonal on each other: p{) . pl) = 0 for i # j

Step 1: p(l) =gl

Step 2: p(Z) =a® — slzp(l) where we choose s1, such that p(!) . p(2) = 0:

oV a® —gppM . p Zg s

(2

~

Step 3: p(3> = aB) — s13p(1) —sp3p'” | where we choose s13, s23 such that

[ p(l) p(3) o 0, i‘e.’ p(l) a(3) _sl3p(1) p(l) _523 p(l) p(2) — O’ hence S13 =
— (1) . p(1)
0
5 . 2).,40)
° p(z) . p(3) = 0’ i.e.’ p(z) . a(3) — 8513 p( ) p( ) —S23p(2) p(z) = O, hence S23 =
S—— 2) -p(l)
0
Step n: p(") = qW — slnp(l) — = sn,lﬁp("*l) where we choose s1y,...,8,—1,, such that pW.pM =0forj=1,...
which yields
(). pn)
sim=2""L_ forj=1,...n—1
p(]) p(])

(6)



1 0 0
Example: We are given the vectors a(!) = i ,a? = ; ,a®) = i . Use Gram-Schmidt orthogonalization to
1 3 9
find an orthogonal basis p(l), p®, p(® for the subspace V = span {al),a'?),a®}
1
Step 1: | o) — g ] = | 1
epl:|p'/ =a" |= |
1
0 1] —3
(). 42 611 _1
p@ g P e L0 _| 2
Step 2: | p :==a p(l)-p(l)p ) 1|1 %
3
3 1 1 5
0 1 -3 1
1. ,3 2) . (3 1
Step 3: | p® :a<3>_P()‘a()pm_P()'“()p(z) S I U O R B 2 O B
p( . pD) p@ . p@ 4 4 |1 51 3 ~1
| 9 1 3 1
Note that we have
al = p)
@_ 80
a’ =p —I—Zp
14 15
G B L ) 27 (2)
a p 417 + SP
which we can write as
1] & 14
D 4@ 40 1) @ ) 1 i
{a(),a( a i|: p PP 0 1 3
0 0 1
1 00 [1 —1.5 1
111} |1 =05 —1 (l)lis 335
1 24 |1 05 -1 0 0 1
1 39 1 15 1
A P 5
In the general case we have
al = ph)
a? = p@ 4 5,pM)
a® = pO® 4 55p1) 4 5153p%)
a = p(”) +S1np(l) 4. ..+Sn717np("*1)
which we can write as
L s - s
aV,a®,.a] = [pp®, . p o
: ’ © Sn—1n
0 0 1

Therefore we obtain a decomposition A = PS where



e P € R™*" has orthogonal columns
e § &€ R™" is upper triangular, with 1 on the diagonal.
Note that the vectors p(!), ..., p(®) are different from 0:

Assume, e.g., that p(3) =al) — s13p(1) - sz3p(2) =0, then a®® = s13p(1) +S23p(2) is in span {p(l),p(z)} = span {a(l),a(z)}.
This is a contradiction to the assumption that a(!), a(®) a3 are linearly independent.

Solving the least squares problem ||Ac — b|| = min using orthogonalization
We are given A € R”*" with linearly independent columns, b € R”. We want to find ¢ € R” such that ||Ac — b|| = min.
From the Gram-Schmidt method we get A = PS, hence we want to find ¢ such that
|P _Sc_—b|| = min
~~
d

This gives the following method for solving the least squares problem:

e use Gram-Schmidt to find decomposition A = PS

p b
e solve |Pd — b|| = min: d; := RG] fori=1,...,n
p(l) p i
e solve Sc = d by back substitution
(1 0 0 0
. 1 11 1
Example: Solve the least squares problem ||Ac — b|| = min for A = L2 o4l b= 4
|1 3 9 7
1 :(1)‘2 _11 1 1.5 357
e Gram-Schmidt gives A = 1 0 5 1 0 1 3 (see above)
1 1.5 1 o 0 T
4 S
M.p 12 @.p 12 G).p 2
— p N — — 7p = — = = 7]) = - =
ch=Tmom T TR g e T T G e T 00
1 1.5 35 1 3
e solving | 0 1 ¢y | = | 2.4 | by back substitution gives ¢c3 =0.5,¢; =0.9,¢c; = —1.1
0 0 1 3 0.5
—1.1
Hence the solution of our least squares problem is the vectorc = | 0.9
0.5

Note: If you want to solve a least squares problem by hand with pencil and paper, it is usually easier to use the normal
equations. But for numerical computation on a computer using orthogonalization is usually more efficient and more accurate.

Finding an orthonormal basis ¢V,....¢: the QR decomposition

The Gram-Schmidt method gives an orthogonal basis p(l), ey p(”> for V = span {a(l) yeen ,a(”)}
Often it is convenient to have a so-called orthonormal basis ¢V, ..., ¢ where the basis vectors have length 1: Define
. 1 .
gV = __pl/) forj=1,....n
1]

then we have



° span{q(l),...,q(”)} =V

. 1 forj=k
(). k) —
[} . =
1 {0 otherwise

This means that the matrix Q = [¢("),...,¢")] satisfies QT Q = I where I is the n x n identity matrix.

Since p\/) = Hp(j) H q<j> we have
4D = Hpu)Hq(l)
rii
a? = HP(Z)H"(Z)“” pmem
2 r2

a = pr g 4510 || p¢ >H O p<n—1>H g"n
T'nn I'ln Fn—1n
which we can write as
e rz ot Fa
a0, a] = [g",4®,....g" 0
: . Tn—1n
0O --- 0 Fon
A=0R
where the n X n matrix R is given by
row 1 of R Hp(l)H (row 1 of R)
row nof R Hp(”) || (row nof R)
We obtain the so-called QR decomposition A = QR where
e the matrix Q € R™*" has orthonormal columns, range Q = range A
e the matrix R € R™" is upper triangular, with nonzero diagonal elements
Example: In our example we have P p) =4, p@ . p@) =5 pB) . pG) =4 hence
5 -1.5
1 5 1 1 -5 1
M — Z 1) = @, _— ()= Z,0) =
q 217 51 q \BP /5 5 ) q 2P
5 1.5
and we obtain the QR decomposition
1 00 5 —-15/V/5 5
111 5 —5/V5 -5 2 37
1 24| |5 55 -5 8?3‘26
1 39 5 15/V5 5



In Matlab we can find the QR decomposition using [Q,R]=qr(A,0)
This works for symbolic matrices

> A=sym([1111;0123;01429])’;
>> [Q,R] = qr(A,0)

Q =
1/2, -(3%x57(1/2))/10, 1/2]
1/2, -57(1/2)/10, -1/2]
1/2, 57(1/2)/10, -1/2]

[
[
[
[ 1/2, (3%5~(1/2))/10, 1/2]
R_

[
[
[

2, 3, 7]
0, 57(1/2), 3%57(1/2)]
0, 0, 2]

and it works for numerical matrices

> A=0[1111;0123; 01409]";
>> [Q,R] = qr(A,0)

Q =
-0.5000 0.6708 0.5000
-0.5000 0.2236  -0.5000
-0.5000 -0.2236 -0.5000
-0.5000 -0.6708 0.5000
R =

-2.0000 -3.0000 -7.0000
0 -2.2361 -6.7082
0 0 2.0000

Note that for numerical matrices Matlab returned the basis —q(l), —q(z) , q(3) (which is also an orthonormal basis) and hence
rows 1 and 2 of the matrix R is (—1) times our previous matrix R.

If we want to find an orthonormal basis for range A and an orthonormal basis for the orthogonal complement (rangeA)+ =
nullA" we can use the command [Qh,Rh]=qr(A) : It returns matrices Q € R”™*" and R € R”*" with

basis for range A basis for (range )+ R

A _ (1) (n) (n+1) (m) R\ _
Q 5 d red ’ m — nrows of zeros

> A=[1111;0123; 01429]';
>> [Qh,Rh] = qr(A)

Qh =
-0.5000 0.6708 0.5000 0.2236
-0.5000 0.2236 -0.5000 -0.6708
-0.5000 -0.2236 -0.5000 0.6708
-0.5000 -0.6708 0.5000 -0.2236
Rh =

-2.0000 -3.0000 -7.0000
0 -2.2361 -6.7082
0 0 2.0000
0 0 0

But in most cases we only need an orthonormal basis for range A and we should use [Q,R]=qr (A, 0) (which Matlab calls
the “economy size” decomposition).



Solving the least squares problem |[Ac —b|| = min using the QR decomposition

If we use an orthonormal basis gV, .., g™ for span{a(l), ... ,a(”)} we have Q" Q = I. The solution of ||Qd — b|| = min is
therefore given by the normal equations (Q' Q)d = Q' b, i.e., we obtaind = Q" b.

This gives the following method for solving the least squares problem:
e find the QR decomposition A = QR
o letd=0Q'b
e solve Rc = d by back substitution

In Matlab we can do this as follows:

[Q,R] = qr(A,0);
d = Q'xb;
¢ = R\d;

In our example we have

> A=[1111; 0123;01409]"; b=10;1;4;7]1;
>> [Q,R] = qr(A,0);
>> d = Q'x*b;

R\d

-

>> C =

C =
-0.1000
0.9000
0.5000

This works for both numerical and symbolic matrices.

For a numerical matrix A we can use the shortcut c=A\y which actually uses the QR decomposition to find the solution of
|Ac — b|| = min

>> A [1111;,0123;01409]"; b=10;1;4;71;
>> ¢ = A\b
C =

-0.1000

0.9000

0.5000

Warning: This shortcut does not work for symbolic matrices:

> A=sym([1111;,0123;0149])"; b=-sym([0;1;4;7]);

>> ¢ = A\b

Warning: The system is inconsistent. Solution does not exist.
C =

Inf

Inf

Inf



