1 Introduction: scalars, vectors, matrices

1.1 Scalars and vectors

A scalar is a real number ¢ € R.

ui
A vector ii € R" has the form# = | : | with components uj,...,u, € R.
Up
(Later we will also consider complex scalars ¢ € C and complex vectors i € C".)
0
The zero vector is 0 = :
0
u
Geometric interpretation: A vector | : | canrepresent
Un
e cither the point in R"” with coordinates uy, ..., u,.
e or an arrow in R”
X1 X1 +up
The starting point may be any point | : € R", the end point is
Xn Xp + Uy

Basic operations: For vectors i,V € R"and a scalar ¢ € R we define the following operations:

ui Vi up+vi
vector--vector: : + : =
Up Vn Uy +Vy
ui C- Ul
scalar-vector: ¢- | @ | =
Uy c-up

Example: Given two points i,V € R", find the midpoint 7.

The vector d := V — ii points from the point # to the point V so that we have Vv = ii + d. We can obtain the midpoint by adding
1d to it:

3 :

—

m=ii+id =i+ 3V —i)=Ji+4iv

Example: Given two points i,V € R”, find all points on the line through # and v:

Lett € R, then adding ¢ - dtoii gives a point on the line:

Note that

e ¢ =0 gives the point i
t = 1 gives the point ¥

e 0 <1< 1 gives a point between i and v
e 1 < 0 gives points on the line beyond the point

e ¢ > 1 gives points on the line beyond the point ¥



1.2 Linear combinations, spans, linear independence

We call
c1idM + - 4 it
a linear combination of the vectors i1, ... #K) ¢ R” with scalars ¢y, ..., c; € R.
The set of all possible linear combinations is called the span of the vectors al, . ak:
span{ﬁ(l),...,ﬁ(k)} = {clﬁm o™ | ey, e € R}
Examples:
(1] 1
1. span{ 1 } is the line through the origin and the point | 1
| 0 0
TREEE
2. span{ 1,10 } is the x;x, plane
. 0 - - 0 -
(1] [1] [0]
3.span{| 1 [,| O |,| 1 |} isalso the x;x, plane
L0 [O0] |LO]
17 707 [0]
4. span{ L, 1,1 } is the whole space R*
L0 O] |1 ]
[0 0
5. span{ | 0 |} ={| O |} isjustthe origin
0 0

We see that spans in R3 are one of the following:

0
e justthe origin { | 0 |}
0

e lines through the origin
e planes through the origin
e the whole space R*
We call these sets subspaces of R, In general a subspace of R” is a subset U C R” such that
e iic U implies c-i € U for any c € R
e U veUimpliesi+VeU

The first property with ¢ = 0 shows that U must contain the origin 0.

1 [ 1] 0
In example 3. we considered span{ 1{,]0],[1 } In this case one the of the vectors is redundant: We can e.g.
0 0 0
express the third vector as a linear combination of the other two vectors:
[0 ] 1 1
1 |=1 1 |+(=1)-]0
0 0 0




or by moving everything to the left hand side

0 1 1 0
Ll +(=D-[ 1 {+1-]0|=]|0],
0 0 0 0

i.e., we have a linear combination ¢;ii'!) + ¢,ii®) + C3ﬁ(3) = 6, but not all of the coefficients ¢, c;,c3 are zero.

In such a case we say that the vectors @1, i#®) are linearly dependent.

Definition 1. We say that vectors dM, ..., i@®) ¢ R" are linearly dependent if there are coefficents ci, ..., c; which are not
all zero such that
et 4+ 4 ii® = 0.

If e.g. ¢, # 0 this means we can write ii?) as a linear combination of the remaining vectors. Hence we have

e The vectors #1),... %) € R” are linearly dependent if we can write one of the vectors as a linear combination of the
remaining ones

e | The vectors @"), ..., i®) € R" are linearly independent if

ciiM 4 i =0

can only happen forc; = = ¢, =0.
1 0] [0]
Example: Show that the vectors | 1 |,| 1 |,| 1 | inexample 4. are linearly independent:
0 0 | 1]
Consider a linear combination
1 [ 0 i 0 C1
ci| 1 |+ 1 | 43| 1 =\ c +cr+c3
0 | 0 i Cc3
Ci 0
If this is the zero vector we have | ¢; +cx+c3| = | O |, ie., we have the three equations
Cc3 0

c1 =0, c1+c+c3=0, c3=0

which imply ¢; = ¢2 = ¢3 = 0. Hence the three vectors are linearly independent.

Consider a subspace U given by
U =span{@V,...,a%}

e if the vectors @!), ... #%) are linearly dependent, we can remove some of them and still obtain the same subspace U
e if the vectors #V), ..., i are linearly independent we cannot remove any of them. In this case we say that the vectors
@ ...,i@® form a basis of the subspace U.

Note that there a many possible choices for a basis of a subspace U: In example 4. we saw that

0 0
1T, 1 is a basis of U = R3
0 1
But we could also choose the following:
1 0
o, 1]|,]lo0 is a basis of U = R3
0 0 1



1.3 Matrices

A matrix A € R™*" is a rectangular array with m rows and n columns

air -t ain
A=
aml - Qmn
containing entries a@;; € Rfori=1,...,mand j=1,...,n.

For a matrix A € R™*" and a vector X € R"” we define the matrix-vector product y = AX € R™ by
Y1 apxy+---+amxy,
= AX = :
Ym am1X1+ -+ ApnXn
(“multiply rows by columns”).

Note that a matrix A € R™*” maps a vector X € R” to a vector y € R™.

Example:
2 1 ) 2:2+1-3 7
-1 3 [3]: (-1)-243.3 [=]|7|,
1 4 1-2+4-3 9
’ 7
i.e., the matrix maps the vector [ 3 ] to the vector | 7
9
We can look at this also in the following way:
2 1 ’ 2 1
-1 3 [3]:2‘ -1 [(+3-| 3|,
1 4 1 4

i.e., a matrix-vector product yields a linear combination of the n columns of the matrix A:

ai Aln
Ai=x1| @ |+ +x,

aml Amn



