
Linear Systems of m equations for n unknowns

Introduction

We want to find all solutions for a linear system of m equations for n unknowns.
Example with m = 3 and n = 4:  0 0 1 −2

2 4 2 −2
1 2 3 −5




x1
x2
x3
x4

=

 3
4
8



Using Gaussian elimination with pivoting to find the row echelon form

Column 1: From the three pivot candidates in column 1 we select 2 as a pivot.
We interchange rows 1 and 2.
We perform elimination using the pivot 2 , generating zeros in column 1.

L =

 . . .
. . .
. . .

 ,
 0 0 1 −2

2 4 2 −2
1 2 3 −5




x1
x2
x3
x4

=

 3
4
8

 , p =

 1
2
3



L =

 . . .
. . .
. . .

 ,
 2 4 2 −2

0 0 1 −2
1 2 3 −5




x1
x2
x3
x4

=

 4
3
8

 , p =

 2
1
3



L =

 . . .
0 . .
1
2 . .

 ,
 2 4 2 −2

0 0 1 −2
0 0 2 −4




x1
x2
x3
x4

=

 4
3
6

 , p =

 2
1
3


Column 2: We have two pivot candidates which are all zero. We therefore move on to the next column.

L =

 . . .
0 . .
1
2 . .

 ,
 2 4 2 −2

0 0 1 −2
0 0 2 −4




x1
x2
x3
x4

=

 4
3
6

 , p =

 2
1
3


Column 3: From the two pivot candidates in column 3 we select 1 as a pivot.
We perform elimination using the pivot 1 , generating a zero in column 3.

L =

 . . .
0 . .
1
2 . .

 ,
 2 4 2 −2

0 0 1 −2
0 0 2 −4




x1
x2
x3
x4

=

 4
3
6

 , p =

 2
1
3



L =

 . . .
0 . .
1
2 2 .

 ,
 2 4 2 −2

0 0 1 −2
0 0 0 0




x1
x2
x3
x4

=

 4
3
0

 , p =

 2
1
3


Result: From the matrix A we obtained

L =

 1 0 0
0 1 0
1
2 2 1

 , U =

 2 4 2 −2
0 0 1 −2
0 0 0 0

 , p =

 2
1
3



1



such that LU =

 row p1 of A
...

row pm of A

.

We see that the rank of the matrix A is r = 2 since U has two nonzero rows. The first nonzero element in rows 1, . . . ,r is
the pivot. Here the pivots are in columns 1 and 3. Hence x1 and x3 are basic variables, the remaining variables x2 and x4 are
free variables.

We also obtained from the original right hand side vector b =

 3
4
8

 the new right hand side vector y =

 4
3
0

. Note that

the original and the new linear systems are equivalent and have the same solutions:

Ax = b ⇐⇒ Ux = y

We can obtain the new right hand side vector y in two ways:

• transform the vector b along with the matrix A, applying the same row interchanges and elimination operations.

• after obaining L,U, p from the matrix A solve the linear system Ly =

 bp1
...

bpm

 using forward substitution.

Method 1 for solving the linear system Ax = b

This linear system is equivalent to Ux = y.

If

 yr+1
...

ym

 6=
 0

...
0

: There is no solution. STOP.

Otherwise: Use arbitrary values for the n− r free variables. Determine the r basic variables by back substitutation from
(eq.r),. . . ,(eq 1).

In our example we have r = 2. Note that y3 = 0, hence there exists a solution. The free variables are x2,x4, the basic variables
are x1, x3.

We use (eq.2) to determine x3:
x3−2x4 = 3 ⇐⇒ x3 = 3+2x4

We use (eq.1) to determine x1:

2x1 +4x2 +2x3−2x4 = 4 ⇐⇒ x1 =
4−4x2−2x3 +2x4

2
=

4−4x2−2(3+2x4)+2x4

2
=−1−2x2− x4

Hence any solution x ∈ R4 of Ax = b is given by

x =


−1−2x2− x4

x2
3+2x4

x4

=


−1
0
3
0


︸ ︷︷ ︸

xpart

+x2


−2
1
0
0


︸ ︷︷ ︸

v(1)

+x4


−1
0
2
1


︸ ︷︷ ︸

v(2)

, x2,x4 ∈ R arbitrary

x = xpart + x2v(1)+ x4v(2), x2,x4 ∈ R arbitrary

• for the choice x2 = x4 = 0 we obtain a “particular solution” xpart satisfying Axpart = b

• the vectors v(1),v(2) satisfy Av(1) =~0, Av(2) =~0

• for the right hand side vector b =~0 we obtain Ax =~0 ⇐⇒ Ux =~0 yielding x = x2v(1)+x4v(2) with x2,x4 ∈R arbitrary.
Hence nullA = span{v(1),v(2)} .
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Finding a basis of the null space

We can obtain the vectors v(k) satisfying Av(k) =~0 for k = 1, . . . ,n− r as follows:
For each free variable x j do the following:

• Let x j := 1, set all other free variables to zero.

• Find the basic variables by solving Ux =

 0
...
0

 with back substitution.

This yields a solution vector

v =



∗
...
∗
1
0
...
0



1
...

j−1

j

j+1
...
n

(1)

.

Then Av =~0 means v1a(1)+ · · ·+ vna(n) where a(1), . . . ,a(n) are the columns of A. Hence for this specific vector v we obtain

a( j) =−v1a(1)−·· ·− v j−1a( j−1)

i.e., we have written column j of the matrix as a linear combination of columns 1 through j−1.

Claim: The vectors v(1), . . . ,v(n−r) form a basis for nullA.

Gaussian elimination gives Ax =~0 ⇐⇒ Ux =~0. Then back substitution yields x = c1v(1)+ c2v(2) with c1,c2 ∈ R arbitrary.
Hence we have nullA = span{v(1), . . . ,v(n−r)} . It remains to show that the vectors v(1), . . . ,v(n−r) are linearly independent:
Assume that

c1v(1)+ · · ·+ cn−rv(n−r) =~0 (2)

Let j be the index of the last free variable. Then v(n−r) has the form (1), and the vectors v(1), . . . ,v(n−r−1) have the j-th
component zero. Therefore (2) implies that cn−r = 0. We can now repeat the same argument with the second to last free
variable and v(n−r−1) and obtain cn−r−1 = 0, . . . , and c1 = 0.

Method 2 for solving the linear system Ax = b

We can obtain the same answer as in Method 1 in the following way:

• Set all free variables to zero. Use back substitution for Ux = y to find the basic variables. This yields a particular
solution xpart.

• Find a basis v(1), . . . ,v(n−r) of the null space as described above.

• The general solution is given by

x = xpart + c1v(1)+ · · ·+ cn−rv(n−r), c1, . . . ,cn−r ∈ R arbitrary

Using symbolic Matlab to solve a linear system

Note that

>> A=sym([0 0 1 -2; 2 4 2 -2; 1 2 3 -5]);
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LU decomposition with echelon matrix U

For a general m× n matrix A we can apply Gaussian elimination in the same way as explained before for square matrices.
However, if at some point all pivot candidates are zero, we do not stop but instead move to the next column.

Algorithm: Gaussian Elimination yielding echelon matrix U Here we denote the elements of the matrix A by A(i, j).
We use Matlab notation for row and column ranges, i.e., A(3, :) is row 3.

Input: matrix A ∈ Rm×n.
Output: matrix L ∈ Rm×m (lower triangular), matrix U ∈ Rm×n (row echelon form), vector p ∈ Rm (contains permutation of
1, . . . ,m)

L :=

 0 · · · 0
...

...
0 · · · 0


︸ ︷︷ ︸

m×m

; U := A; p :=

 1
...
m

 (initializations)

c := 1 (current column)
For k = 1 to m (Find pivot for row k)

While c≤ n And U(k : m,c) =

 0
...
0

 (if all pivot candidates are zero)

c := c+1 (go to next column)
End
If c > n

Break (There is no pivot for row k, break out of For loop)
End
Pick j ∈ {k, . . . ,m} such that U( j,c) 6= 0 (Pick a nonzero pivot candidate)
Interchange rows j and k of L, U , p
For l = k+1 to m

L(l,k) :=U(l,c)/U(k,c) (compute multiplier)
U(l, :) :=U(l, :)−L(l,k)U(k, :) (subtract multiplier times pivot row from current row)

End
c := c+1 (next column)

End
For k = 1 to m

L(k,k) := 1 (Put 1’s on the diagonal of L)
End

The matrix U has row echelon form: Let r denote the number of nonzero rows of U . Rows r+1, . . . ,m of U are zero. For
j = 1, . . . ,r we denote the column of the first nonzero element in row j by q j, this element is called pivot. We have

1≤ q1 < q2 < .. . < qr ≤ n.

Columns q1, . . . ,qr are called pivot columns.

We have

LU = Ã where Ã :=

 row p1of A
...

row pmof A


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Let us define the m×m matrix L̂ by

row p1of L̂ := row 1 of L
...

row pmof L̂ := row mof L

then
L̂U = A

How to use L,U, p for finding bases of ranges and nullspaces

Let q1, . . . ,qr denote the pivot columns (corresponding to the basic variables).

Range of A:

Basis 1 is given by the columns q1, . . . ,qr of the matrix A.

Basis 2 is given by the columns 1, . . . ,r of L̂.

Nullspace of A:

For each of the n− r free variables:

Set this free variable to 1, set all other free variables to 0. Then use Ux = y and back substitution to find the basic variables:
use equation r to find xqr , . . . , use equation 1 to find xq1 .

This gives a vector of the form x =



∗
...
∗
1
0
...
0



1
...

j−1

j

j+1
...
n

Let us denote the n− r vectors which we obtain in this way by v(1), . . . ,v(n−r). Then null(A) = span{v(1), . . . ,v(n−r)}.

Range of A>:

Basis 1 is given by the rows 1, . . . ,r of U .

Basis 2 is given by the rows p1, . . . , pr of A, i.e. the rows of A where the pivot elements come from.

Nullspace of A>:

For j = 1, . . . ,m− r:

Solve L>u =



0
...
0
1
0
...
0



1
...

r+ j

...
m

using back substitution. Then let


wp1 := u1

...
wpm := um

Let us denote the m− r vectors which we obtain in this way by w(1), . . . ,w(m−r). Then null(A>) = span{w(1), . . . ,w(m−r)}.
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How to use L,U, p to solve a linear system Ax = b

• Solve Ly =

 bp1
...

bpm

 using forward substitution.

• If yr+1, . . . ,ym are not all zero: There is no solution.

• If yr+1, . . . ,ym are all zero we can find a particular solution as follows:
Set all free variables to zero. Then use Ux = y and back substitution to find the basic variables:
use equation r to find xqr , . . . , use equation 1 to find xq1 .

• The general solution is

x = xpart + c1v(1)+ · · ·+ cn−rv(n−r) with c1, . . . ,cn−r ∈ Rarbitrary

where v(1), . . . ,v(n−r) is a basis of null(A).

The following statements are equivalent:

• The linear system Ax = b has a solution

• b ∈ range(A)

• yr+1, . . . ,ym are all zero

• w( j)>b = 0 for j = 1, . . . ,m− r where w(1), . . . ,w(m−r) is a basis of null(A>).

Dot product (a.k.a. scalar product or inner product)

For two column vectors u,v ∈ Rn the expression

u>v = [u1 . . . un]

 v1
...

vn

= u1v1 + · · ·+unvn

gives a scalar. This is the so-called dot product u · v := u1v1 + · · ·+unvn .

Vectors u,v with u · v = 0 are called orthogonal.

Orthogonal complement

If U is a subspace of Rn we can consider the vectors which are orthogonal on all vectors of U :

U⊥ := {v ∈ Rn | v ·u = 0 for all u ∈ Rn}

This is again a subspace which is called the orthogonal complement of U .

Examples for R3: The 2-dimensional subspace U = span


 1

0
0

 ,
 0

1
0

 is a plane through the origin. A vector v1
v2
v3

 ∈ R3 which is orthogonal on all vectors in U satisfies v ·

 1
0
0

= v1 = 0 and v ·

 0
1
0

= v2 = 0. Hence

U⊥ = span


 0

0
1


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which is a 1-dimensional subspace, i.e., a line through the origin.

The orthogonal complement of V = span


 0

0
1

 consists of all vectors u ∈ R3 with u ·

 0
0
1

= u3 = 0, hence

V⊥ = span


 1

0
0

 ,
 0

1
0

 .

nullA and rangeA> are orthogonal complements

By definition the null space of A consists of all vectors x with Ax =~0, i.e., the vector x satisfies the m equations a11
...

a1n

 ·
 x1

...
xn

= 0, . . .

 am1
...

amn

 ·
 x1

...
xn

= 0 (3)

By definition the range of A> is the span of its columns:

A> = span


 a11

...
a1n

 , . . . ,
 am1

...
amn




Therefore the orthogonal complement of A> consists of exactly the vectors x ∈ Rn satisfying (3).

rangeA and nullA> are orthogonal complements

This follows by applying the above argument to A> in place of A.

Solvability conditions for the linear system

Therefore we can rephrase the statement

The linear system Ax = b has a solution ⇐⇒ b ∈ rangeA

as
The linear system Ax = bhas a solution ⇐⇒ b is orthogonal on all vectors in nullA>

If we have a basis w(1), . . . ,w(m−r) for nullA> we obtain m− r solvability conditions:

The linear system Ax = b has a solution ⇐⇒ b ·w(1) = 0, . . . , b ·w(m−r) = 0 (4)

We can see from Gaussian elimination how to find these vectors w(1), . . . ,w(m−r):

The linear system Ax = b is equivalent to Ux = y where Ly = b̃ :=

 bp1
...

bpm

 . The m− r solvability conditions for Ux = y are

yr+1 = 0, . . . , ym = 0.
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The first condition can be written as
[

0, · · · ,0,
r+1
1 ,0, · · · ,0

] y1
...

ym

= 0. If we have a vector u ∈ Rm with

[
0, · · · ,0,

r+1
1 ,0, · · · ,0

]
= [u1, . . . ,um]L (5)

we have [
0, · · · ,0,

r+1
1 ,0, · · · ,0

] y1
...

ym

= [u1, . . . ,um] Ly︸︷︷︸
b̃

= u · b̃

i.e., the condition yr+1 = 0 is equivalent to u · b̃ = 0. By taking the transpose (5) becomes

L>u =



0
...
0
1
0
...
0



1
...

r+1

...
m

By reordering the compoments of u we obtain a vector w such that u · b̃ = w ·b. This is exactly the first vector w(1) in the null
space of A> which we constructed above.

In this way we obtain vectors w(1), . . . ,w(m−r) such that (4) holds.

Summary

The matrix A maps Rn to Rm. We obtain orthogonal decompositions of Rn and Rm with the following dimensions and
mapping properties:

n n−r r

Rn = null(A)
⊥
+ range(A>)

↓ ↓ ↓ 1 to 1

Rm = {~0} + range(A)
⊥
+ null(A>)

m r m−r

The matrix A> maps Rm to Rn:

n n−r r

Rn = null(A)
⊥
+ range(A>) + {~0}

↑ ↑ 1 to 1 ↑

Rm = range(A)
⊥
+ null(A>)

m r m−r
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Example 1

Consider the 4×5 matrix A =


2 −1 4 2 3
−2 1 2 0 2
6 −3 0 2 −1
0 0 2 −2 1

.

Perform Gaussian elimination to find L,U, p:

Column 1: Pivot selection:


2 −1 4 2 3
−2 1 2 0 2
6 −3 0 2 −1
0 0 2 −2 1



Elimination: L =


. . . .
−1 . . .
3 . . .
0 . . .

, U =


2 −1 4 2 3
0 0 6 2 5
0 0 −12 −4 −10
0 0 2 −2 1

, p =


1
2
3
4



Column 2: Pivot selection:


2 −1 4 2 3
0 0 6 2 5
0 0 −12 −4 −10
0 0 2 −2 1

 all candidates are zero, proceed to next column

Column 3: Pivot selection:


2 −1 4 2 3
0 0 6 2 5
0 0 −12 −4 −10
0 0 2 −2 1



Elimination: L =


. . . .
−1 . . .
3 −2 . .

0 1
3 . .

, U =


2 −1 4 2 3
0 0 6 2 5
0 0 0 0 0
0 0 0 −8

3 −2
3

, p =


1
2
3
4



Column 4: Pivot selection: U =


2 −1 4 2 3
0 0 6 2 5
0 0 0 0 0
0 0 0 −8

3 −2
3


interchanging rows 3 and 4 gives

L =


. . . .
−1 . . .

0 1
3 . .

3 −2 . .

, U =


2 −1 4 2 3
0 0 6 2 5
0 0 0 −8

3 −2
3

0 0 0 0 0

, p =


1
2
4
3


Elimination: use L43 = 0, this does not change U .

Column 5: Pivot selection: U =


2 −1 4 2 3
0 0 6 2 5
0 0 0 −8

3 −2
3

0 0 0 0 0

 all candidates are zero

Since we are already at last column we are done!

Result:

L =


1 0 0 0
−1 1 0 0
0 1

3 1 0
3 −2 0 1

 , U =


2 −1 4 2 3
0 0 6 2 5
0 0 0 −8

3 −2
3

0 0 0 0 0

 , p =


1
2
4
3



9



The rank is r = 3. The numbers of the pivot columns are q =

 1
3
4

. I.e., the basic variables are x1,x3,x4, the free variables

are x2,x5.

Finding a basis for nullA:

Set x2 = 1, x5 = 0. Then use U~x =~0 to find x4,x3,x1 by back substitution, yielding


1
2
1
0
0
0



Set x5 = 1, x2 = 0. Then use U~x =~0 to find x4,x3,x1 by back substitution, yielding


1
4
0
−3

4
−1

4
1



Finding a basis for rangeA:

Use columns q1, . . . ,qr of the matrix A, i.e. columns 1,3,4:


2
−2
6
0

 ,


4
2
0
2

 ,


2
0
2
−2



Finding a basis for rangeA>:

Use rows 1, . . . ,r of U :


2
−1
4
2
3

 ,


0
0
6
2
5

 ,


0
0
0
−8

3
−2

3



Finding a basis for nullA>:

Solve L>u =


0
0
0
1

 by back substitution gives u =


−1
2
0
1

. Let


wp1 := u1
wp2 := u2
wp3 := u3
wp4 := u4

, this gives w =


−1
2
1
0

 .
Hence the linear system Ax = b has a solution if and only if the right hand side vector b ∈R4 satisfies the condition w ·b = 0,
i.e.,

−b1 +2b2 +b3 = 0.
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Example 2

Consider the 3×2 matrix A =

 2 −4
−1 2
1 −2

. The matrix maps a vector x ∈ R2 to a vector b = Ax ∈ R3.

Gaussian elimination gives

L =

 1 0 0
−1

2 1 0
1
2 0 1

 , U =

 2 −4
0 0
0 0

 , p =

 1
2
3


We see that the rank is r = 1 and q1 = 1: the basic variable is x1, the free variable is x2. We obtain

• a basis for nullA: solving U
[

x1
1

]
=

[
0
0

]
gives

[
2
1

]

• a basis for rangeA: column q1 of A is

 2
−1
1


• a basis for rangeA>: row 1 of U is

[
2
−4

]

• a basis for nullA>: solving L>

 u1
u2
u3

 =

 0
1
0

 gives

 1
2
1
0

, solving L>

 u1
u2
u3

 =

 0
0
1

 gives

 −1
2

0
1

. Hence

the basis is given by the vectors

 1
2
1
0

 ,
 −1

2
0
1

.

This shows how the matrix A maps a point in R2 to a point in R3: All points on the line null(A) are mapped to

 0
0
0

.

The points on the line range(A>) are mapped 1-to-1 to the points on the line range(A).

This shows how the matrix A> maps a point in R3 to a point in R2: All points on the plane null(A>) are mapped to
[

0
0

]
.

The points on the line range(A) are mapped 1-to-1 to the points on the line range(A>).

-5 -4 -3 -2 -1 0 1 2 3 4 5
-4

-3

-2

-1

0

1

2

3

4

null(A)

range(A
T
)
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Example 3

Question: Find a basis for the orthogonal complement of the subspace W = span




1
2
3
4

 ,


1
1
1
1


.

Let us define A =

[
1 2 3 4
1 1 1 1

]
, then we have that W = rangeA>. Hence we need to find a basis for W⊥ = nullA.

Gaussian elimination gives the row echelon form U =

[
1 2 3 4
0 −1 −2 −3

]
, hence x1,x2 are basic variables and x3,x4

are free variables.

First vector for nullA: Let x3 = 1, x4 = 0, use back substitution for Ux =~0 to find x2,x1. This gives v(1) =


1
−2
1
0



Second vector for nullA: Let x3 = 0, x4 = 1, use back substitution for Ux =~0 to find x2,x1. This gives v(2) =


2
−3
0
1



Answer: We have the following basis: W⊥ = span




1
−2
1
0

 ,


2
−3
0
1




In Matlab we can use the null command for symbolic matrices to find this:

>> A = sym([1 2 3 4; 1 1 1 1]);
>> V = null(A)
V =
[ 1, 2]
[ -2, -3]
[ 1, 0]
[ 0, 1]

Note that the null command in Matlab also works for numerical matrices, but gives a different basis:

>> A = [1 2 3 4; 1 1 1 1];
>> V = null(A)
V =

-0.4001 -0.3741
0.2546 0.7970
0.6910 -0.4717
-0.5455 0.0488

This is just another possible basis for the same subspace. Actually, for numerical matrices the null command returns an

orthonormal basis: the vectors are orthogonal on each other and have length 1, i.e., V>V =

[
1 0
0 1

]
:

>> V’*V
ans =

1.0000 -0.0000
-0.0000 1.0000
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