
Application example: masses and springs

Introduction: one mass and one spring

We consider a mass m1 and a spring with spring constant k1. The mass can move horizontally. This is the
picture at equilibrium:

m1

k1

Let x1(t) denote the displacement of the mass from the original position at time t. Assume that we pull
with a horizontal force F1 at the mass.

Newton’s law states that

mass · acceleration = sum of all forces acting on mass

The velocity of the mass is x′
1(t), the acceleration is x′′

1(t). We have two forces acting on the mass

• the force from the spring is by Hooke’s law given by −k1 · x1(t) since the length of the spring
changes by x1(t)

• the force F1

Hence Newton’s law gives
m1x

′′
1(t) = −k1x1(t) + F1

For a given force F1 we now want to find an equilibrium solution where the mass does not move,
i.e., the function x1(t) is constant, hence x′

1(t) = 0, x′′
1(t) = 0.

For an equilibrium solution we must therefore have a displacement x1 satisfying

0 = −k1x1 + F1

and solving this gives x1 = F1/k1.

Three masses and three springs

We consider three masses and three springs with spring constants k1, k2, k3. The masses can move hori-
zontally. This is the picture at equilibrium:

m1 m2 m3

k1 k2 k3

Let x1(t), x2(t), x3(t) denote the horizontal displacements of the three masses from their original positions
at time t. Assume that we pull with horizontal forces F1, F2, F3 at the three masses.

We now apply Newton’s law for the mass m1: The acceleration is x′′
1(t). There are three forces acting

on the mass m1:

• the force from spring 1 is given by −k1x1(t), since the length of the spring 1 changes by x1(t)

• the force from spring 2 is given by −k2 (x1(t)− x2(t)) since the length of spring 2 changes by x1(t)−
x2(t)

• the force F1

yielding

m1x
′′
1(t) = −k1x1(t)− k2 (x1(t)− x2(t)) + F1

m1x
′′
1(t) = −(k1 + k2)x1(t) + k2x2(t) + F1



We can similarly apply Newton’s law for mass m2 and for mass m3. We obtain the three equations

m1x
′′
1(t) = −(k1 + k2)x1(t) + k2x2(t) + F1

m2x
′′
2(t) = k1x1(t)− (k2 + k3)x2(t) + k3x3(t) + F2

m3x
′′
3(t) = k3x2(t)− k3x3(t) + F3

or  m1x
′′
1(t)

m2x
′′
2(t)

m3x
′′
3(t)

+

 (k1 + k2) −k2 0
−k2 (k2 + k3) −k3
0 −k3 k3


︸ ︷︷ ︸

A

 x1(t)
x2(t)
x3(t)

 =

 F1

F2

F3


For a given forces F1, F2, F3 we now want to find an equilibrium solution where the masses do not

move, i.e., the functions x1(t), x2(t), x3(t) are constant, hence x′′
1(t) = x′′

2(t) = x′′
3(t) = 0.

For an equilibrium solution we must therefore have a displacement vector ~x =

 x1

x2

x3

 satisfying the

linear system

A~x = ~F (1)

Solving this linear system gives all possible equilibrium solutions. If the linear system has no solution,
then no equilibrium solution exists.

Example 1: Let k1 = 1, k2 = 2, k3 = 3. In this case we obtain

A =

 3 −2 0
−2 5 −3
0 −3 3



Gaussian elimination gives L =

 1 0 0
−2

3
1 0

0 − 9
11

1

, U =

 3 −2 0

0 11
3
−3

0 0 6
11

, ~p =

 1
2
3

. We see that

r = rankA = 3, hence dimnullA = 0. Therefore the linear system (1) has for any right hand side vector
~F a unique solution ~x.

Example 2: Let us now remove the spring 1, and let again k2 = 2, k3 = 3.

m1 m2 m3

k2 k3

Removing the spring is the same as setting k1 = 0 (then it does not cause any forces). Hence we have

A =

 2 −2 0
−2 5 −3
0 −3 3



Gaussian elimination gives L =

 1 0 0
−1 1 0
0 −1 1

, U =

 2 −2 0
0 3 −3
0 0 0

, ~p =

 1
2
3

. We see that now

r = rankA = 2, hence dimnullA = 1 and dimnullA> = 1. Therefore the right hand side vector ~F must
satisfy one condition for a solution to exist. If this condition is satisfied the general solution contains one
free parameter.



Using U we can find a basis for nullA: Note that x1, x2 are basic variables, and x3 is a free variable.
Therefore we let x3 = 1 and then use U~x = ~0 to solve for x2, x1 by back substitution, yielding x2 = 1,
x1 = 1, i.e.,

nullA = span


 1

1
1

 (2)

Using L, ~p we can find a basis for nullA>: Solving L>~u =

 0
0
1

 gives ~u =

 1
1
1

, i.e.,

nullA> = span


 1

1
1

 . (3)

From (3) we obtain: The linear system has a solution only if

 1
1
1

 · ~F = 0, i.e.,

F1 + F2 + F3 = 0. (4)

If this condition is satisfied, the general solution has the form

~x = ~xpart + c ·

 1
1
1

 , c ∈ R arbitrary (5)

because of (2).
This makes sense in terms of physics: Since spring 1 is no longer there, we can freely move the masses

m1,m2,m3 by the same amount which is expressed by (5). But if we want to have an equilibrium solution
where the three masses are at rest, we now need that the the external forces acting on the three masses
have a sum of zero which is expressed by (4). If the external forces have e.g. a positive sum, then the three
masses together will keep accelerating toward the right.


