
Cheat Sheet for MATH461

Here is the stuff you really need to remember for the exams.

1 Linear systems Ax = b

Problem:

We consider a linear system of m equations for n unknowns x1, . . . ,xn:
For a given matrix A ∈ Rm×n and a vector b ∈ Rm we want to find all vectors x ∈ Rn such that Ax = b.

Algorithms:

Gaussian elimination: This gives the decomposition


row p1 of A

...
row pm of A

= LU where

• the row echelon form U ∈ Rm×n has r nonzero rows and r nonzero pivots in columns q1, . . . ,qr. The variables
xq1 , . . . ,xqr are called basic variables, the remaining variables are called free variables.

• the matrix L ∈ Rm×m is lower triangular: the diagonal elements are 1, below the diagonal are the multipliers used in
the elimination

• the permuation vector p contains the numbers 1, . . . ,m in a scrambled order

For given L,U, p

• find basis for rangeA: Use columns q1, . . . ,qr of A

• find basis for nullA: Set one of the free variables to 1 and the others to zero. Then use Ux =~0 and back substitution
to find the basic variables xqr , . . . ,xq1 . This gives vectors v(1), . . . ,v(n−r).

• find basis for rangeA>: Use rows 1, . . . ,r of U

• find basis for nullA>: For j = 1, . . . ,m−r: Solve L>u = e(r+ j) by forward substitition. Then let


wp1 := u1

...
wpm := um

. This

gives m− r basis vectors w(1), . . . ,w(m−r). Here e(k) := [
1
0, . . . ,

k−1
0 ,

k
1,

k+1
0 , . . . ,

m
0]>.

For given L,U, p and right hand side vector b ∈ Rm find general solution of linear system Ax = b:

• solve Ly =

 bp1
...

bpm

 by forward substitution

• find particular solution xpart of Ux = y: Set all free variables to 0. Then use back substitution to find the basic variables
xqr , . . . ,xq1 .

• Find a basis v(1), . . . ,v(n−r) for nullA using U (see above)

• The general solution is x = xpart + c1v(1)+ · · ·+ cn−rv(n−r) where c1, . . . ,cn−r ∈ R are arbitrary
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Subspace V = span
{

v(1), . . . ,v(k)
}

with given vectors v( j) ∈ Rn

• find basis for V :

– Let A have the rows v(1)>, . . . ,v(k)>, then V = rangeA>

– Find row echelon form U (we don’t need L, p)

– use rows 1, . . . ,r of U

• find basis for orthogonal complement V⊥:

– since V⊥ = nullA: use row echelon form U to find basis for nullA

Important facts to remember:

• rangeA and rangeA> have both dimension r

• nullA and rangeA> are orthogonal complements in Rn, dimnullA = n− r

• nullA>and rangeA are orthogonal complements in Rm , dimnullA> = m− r
Hence: Ax = b has a solution ⇐⇒ b is orthogonal on basis vectors of nullA> (we have m− r solvability conditions)

Case of square matrix A ∈ Rn×n

• If r = rankA < n we say that A is singular. If r = n we say A is nonsingular

• A is singular ⇐⇒ detA = 0 ⇐⇒ rows of A are linearly dependent ⇐⇒ columns of A are linearly dependent

• If A is singular: linear system Ax = b has either no solution or infinitely many solutions

• If A is nonsingular: linear system Ax = b has a unique solution x ∈ Rn.
Let u( j) denote the solution vector of Au( j) = e( j), then A−1 =

[
u(1), . . . ,u(n)

]
∈ Rn×n is called inverse matrix.

Then the solution of Ax = b is given by x = A−1b.

2 Least squares problem ‖Ac−b‖= min

Problem:

We have a matrix A ∈ Rm×n with m ≥ n and linearly independent columns. Since the linear system Ac = b does in general
not have a solution, we want to find c ∈ Rn such that

∥∥ Ac−b︸ ︷︷ ︸
residualr

∥∥ is as small as possible.

Application:

“Curve fitting”: We have measured experimental data
t1 . . . tm
y1 · · · ym

and want to fit this with a curve

y = c1g1(t)+ · · ·+ cngn(t)

Here g1(t), . . . ,gn(t) are given functions and c1, . . . ,cn are unknown parameters which we want to find.

We want that the residuals r j = c1g1(t j)+ · · ·+ cngn(t j)− y j are “small”:

Least squares fit: find c1, . . . ,cn such that r2
1 + · · ·+ r2

m is minimal.

With A =

 g1(t1) · · · gm(t1)
...

...
g1(tm) · · · gn(tm)

 we have r = Ac− y. Hence we want to find c ∈ Rn such that ‖Ac− y‖ is minimal.
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Algorithms:

• Method 1: Normal equations: Solve the n×n linear system (A>A)c = A>b .

• Method 2: Orthogonalization

– Find orthogonal basis p(1), . . . , p(n) for span
{

a(1), . . . ,a(n)
}

using Gram-Schmidt process:

p(1) := a(1), p(2) := a(2)− a(2) · p(1)

p(1) · p(1)︸ ︷︷ ︸
s12

p(1), p(3) := a(3)− a(3) · p(1)

p(1) · p(1)︸ ︷︷ ︸
s13

p(1)− a(3) · p(2)

p(2) · p(2)︸ ︷︷ ︸
s23

p(2), . . .

yielding a decomposition A = PS where

P =
[
p(1), . . . , p(n)

]
m×n

has orthogonal columns, S =



1 s12 · · · s1n

0
. . . . . .

...
...

. . . . . . sn−1,n
0 · · · 0 1


n×n

is upper triangular.

– Let d j :=
p( j) ·b

p( j) · p( j)
for j = 1, . . . ,n

– solve Sc = d by back substitution

3 The determinant detA

For a square matrix A ∈ Rn×n

• detA = 0 ⇐⇒ matrix is singular (i.e. columns are linearly dependent)

• expansion formula: Use row 1 or the column 1 to write detA in terms of (n−1)× (n−1) determinants:

detA = a11 detA[11]−a12 detA[12]+ · · ·+(−1)n+1a1n detA[1n]

= a11 detA[11]−a21 detA[21]+ · · ·+(−1)n+1an1 detA[n1]

Here A[ jk] denotes the matrix where we remove row j and column k.
This also works with the row j or column j of the matrix, but with the factor (−1) j−1.

• det
[

a b
c d

]
= ad−bc, det

 a b c
d e f
g h k

= a ·det
[

e f
h k

]
−b ·det

[
d f
g k

]
+ c ·

[
d e
g h

]

4 Eigenvalue problem Av = λv

4.1 Finding eigenvalues and eigenvectors

Problem:

A square matrix A ∈ Rn×n describes a mapping Rn → Rn. If we choose a new basis v(1), . . . ,v(n) of Rn this mapping is
represented by the matrix B =V−1AV where V =

[
v(1), . . . ,v(n)

]
. We want to find a new basis such that the matrix B becomes

“as simple as possible”: if possible, we would like B to be a diagonal matrix.

Hence want to find a vectors v 6=~0 and a numbers λ such that Av = λv.
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Algorithm:

How to find eigenvalues:

• find characteristic polynomial p(λ ) = det


a11−λ a12 · · · a1n

a21 a22−λ
. . .

...
...

. . . . . . an−1,n
an1 · · · an,n−1 ann−λ


︸ ︷︷ ︸

A−λ I

= (−1)nλ n + cn−1λ n−1 + · · ·+

c1λ + c0 = p(λ ) by evaluating the determinant

• solve p(λ ) = 0 to find the eigenvalues λ1, . . . ,λn.
For n = 2 you have to solve a quadratic equation. For n = 3 try to guess one eigenvalue λ1, then you can write
p(λ ) = (λ −λ1)q(λ ) with a quadratic polynomial q(λ ). I will give you hints how to find the eigenvalues if n > 2.

How to find eigenvectors: For each eigenvalue λ1, . . . ,λn solve the linear system
a11−λ a12 · · · a1n

a21 a22−λ
. . .

...
...

. . . . . . an−1,n
an1 · · · an,n−1 ann−λ




v1
v2
...

vn

=


0
0
...
0


i.e., we have to find a basis for null(A−λ I). Since det(A−λ I) = 0 we have r := rank(A−λ I) < n, and we have to find
n− r linearly independent vectors. We call null(A−λ I) the eigenspace for the eigenvalue λ .

By taking the eigenvectors for all eigenvalues we obtain vectors v(1), . . . ,v(m). These vectors are linearly independent, hence

• either m = n: then the matrix is called diagonizable, i.e., the vectors v(1), . . . ,v(n) form a basis for all of Rn

• or m < n: then the matrix is called not diagonizable

Note: eigenvalues and eigenvectors may be complex.

4.2 Case of diagonizable matrices

If we can find n linearly independent eigenvectors v(1), . . . ,v(n), then V =
[
v(1), . . . ,v(n)

]
is nonsingular. Then by changing

to the new basis v(1), . . . ,v(n) the matrix A becomes the diagonal matrix B =

 λ1
. . .

λn

: (Note that blank elements in

the matrix are supposed to be zero)

A
[
v(1), . . . ,v(n)

]
︸ ︷︷ ︸

V

=
[
v(1), . . . ,v(n)

]
︸ ︷︷ ︸

V

 λ1
. . .

λn


︸ ︷︷ ︸

B

, A =V BV−1, V−1AV = B

4.3 Case of non-diagonizable matrices and the Jordan normal form

If all eigenvalues are different the matrix is always diagonizable. If there are multiple eigenvalues it can happen that there
are fewer eigenvectors than the multiplicity of the eigenvalue.

Assume, e.g., that λ = 2 is a triple eigenvalue, but dimnull(A−2I) = 1, i.e., there is only one eigenvector v(1). Then we can
find find two generalized eigenvectors v(1,1),v(1,2) satisfying

(A−λ I)v(1) = 0, (A−λ I)v(1,1) = v(1), (A−λ I)v(1,2) = v(1,1)
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We call v(1),v(1,1),v(1,2) a Jordan chain of length 3. Note that we have

A
[
v(1),v(1,1),v(1,2)

]
=
[
v(1),v(1,1),v(1,2)

] λ 1
λ 1

λ



where instead of a diagonal matrix

 λ

λ

λ

 we now have a so-called Jordan box

 λ 1
λ 1

λ

.

Example: assume that for A ∈ R6×6 we have λ1 = λ2 = λ3 = 2, λ4 = λ5 = 3, λ6 = 5. If there is only one eigenvector v(1)

for λ = 2 we can find a Jordan chain v(1),v(1,1),v(1,2) of length 3. If there is only one eigenvector v(4) for λ = 3 we can find
a Jordan chain v(4),v(4,1) of length 2. Then we have V =

[
v(1),v(1,1),v(1,2),v(4),v(4,1),v(6)

]
and AV =V B with

B =



2 1
2 1

2

3 1
3

5



Main result (Jordan normal form): For any matrix A ∈ Rn×n we can find a basis of Jordan chains for Rn. If V is the
matrix which has these Jordan chains as columns, then we have AV = V B where the matrix B has Jordan boxes along the
diagonal.

4.4 Symmetric matrices and quadratic forms

A quadratic form is a sum of terms with xix j. We can write it as

q(x) = ∑
i=1...n
j=1...n

ai jxix j = x>Ax

with a symmetric matrix A ∈ Rn×n. E.g., consider for n = 3 the quadratic form

q(x) = x2
1 + x2

2 + x2
3−2x1x2−2x1x3−2x2x3 = [x1,x2,x3]

 1 −1 −1
−1 1 −1
−1 −1 1

 x1
x2
x3



Change of basis: For linearly independent vectors v(1), . . . ,v(n) we can write x = y1v(1)+ · · ·+ynv(n) =V y with the matrix
V =

[
v(1), . . . ,v(n)

]
. Then the quadratic form becomes

q(x) = x>Ax = y>V>AV︸ ︷︷ ︸
B

y = y>By

with B =V>AV .

Main result for a symmetric matrix A ∈ Rn×n: We can find an orthonormal basis v(1), . . . ,v(n) of eigenvectors (i.e.,

V>V = I and V−1 = V>) such that V>AV = B =

 λ1
. . .

λn

 with real eigenvalues λ1, . . . ,λn, hence the quadratic

form becomes with the new variables

q(x) = x>Ax = y>By = λ1y2
1 + · · ·+λny2

n
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• find characteristic polynomial p(λ ) = det(A−λ I)

• solve p(λ ) = 0, this gives eigenvalues λ1, . . . ,λn which are real

• for each eigenvalue λ : find a basis for null(A−λ I)
this gives n linearly independent eigenvectors u(1), . . . ,u(n) (i.e., the matrix A is diagonizable)

• for multiple eigenvalues: find an orthogonal basis by using the Gram-Schmidt process
normalize the basis vectors: v( j) := u( j)/

∥∥u( j)
∥∥.

Example: For A =

 1 −1 −1
−1 1 −1
−1 −1 1

 we obtain the eigenvalues λ1 =−1, λ2 = 2, λ3 = 2.

For λ =−1 we have A−λ I =

 2 −1 −1
−1 2 −1
−1 −1 2

 which has rank 2, hence we get one eigenvector v(1) =

 1
1
1

. For λ = 2

we have A−λ I =

 −1 −1 −1
−1 −1 −1
−1 −1 −1

 which has rank 1, hence we get two eigenvectors v(2) =

 −1
1
0

 , v(3) =

 −1
0
1

.

Note that v(2)and v(3) are not orthogonal on each other. Therefore we can use Gram-Schmidt to replace v(3) with

w(3) = v(3)− v(3) · v(2)

v(2) · v(2)
v(2) =

 −1
0
1

− 1
2

 −1
1
0

=

 −1
2
−1

2
1



Now the three vectors

 1
1
1

 ,
 −1

1
0

 ,
 −1

2
−1

2
1

 are orthogonal on each other. We now divide each vector by its norm to

obain an orthonormal basis: 1√
3

 1
1
1

 , 1√
2

 −1
1
0

 ,√ 2
3

 −1
2
−1

2
1

. Hence we obtain

V =


1√
3
− 1√

2
− 1√

6
1√
3

1√
2
− 1√

6
1√
3

0
√

2
3

 , B =V>AV =

 −1 0 0
0 2 0
0 0 2

 , q(x) = y>By =−y2
1 +2y2

2 +2y2
3

Positive definite matrices, positive semidefinite matrices

We say a symmetric matrix A ∈ Rn×n is positive definite if q(x) = x>Ax > 0 for all x 6=~0.

We say a symmetric matrix A ∈ Rn×n is positive semidefinite if q(x) = x>Ax≥ 0 for all x 6=~0.

Result: A is positive definite ⇐⇒ all eigenvalues of A are positive
A is positive semidefinite ⇐⇒ all eigenvalues of A are ≥ 0.

Example: The matrix A =

 1 −1 −1
−1 1 −1
−1 −1 1

 is not positive definite since it has a negative eigenvalue λ1 =−1.
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