
Assignment #2: Solution

1.

(a) Setting det(A − λI) = (6 − λ)(9 − λ) = 0 gives the eigenvalues λ1 = 5, λ2 = 10. For λ1 = 5

solving (A − λ1I)~v
(1) = ~0 gives the eigenvector ~v(1) =

[
−2
1

]
. For λ2 = 10 we obtain the

eigenvector ~v(2) =
[
1
2

]
. Therefore the general solution of the ODE is

~u(t) = c1~v
(1)e−λ1t + c2~v

(2)e−λ2t

Using the initial condition ~u(0) = c1~v
(1) + c2~v

(2) = ~u(0) =

[
1
0

]
gives c1 = −2

5
, c2 = 1

5
and

~u(1)(t) = −2
5

[
−2
1

]
e−5t + 1

5

[
1
2

]
e−10t = 1

5

[
4e−5t + e−10t

−2e−5t + 2e−10t

]
Using the initial condition ~u(0) = c1~v

(1) + c2~v
(2) = ~u(0) =

[
1
0

]
gives c1 = 1

5
, c2 = 2

5
and

~u(1)(t) = 1
5

[
−2
1

]
e−5t + 2

5

[
1
2

]
e−10t = 1

5

[
−2e−5t + 2e−10t

e−5t + 4e−10t

]
Hence we obtain

S(t) = 1
5

[
4e−5t + e−10t −2e−5t + 2e−10t

−2e−5t + 2e−10t e−5t + 4e−10t

]
(b) We have

~u(t) =S(t)~u(0) +

∫ t

s=0

S(t− s)~f(s)ds

~u(t) =1
5

[
4e−5t + e−10t −2e−5t + 2e−10t

−2e−5t + 2e−10t e−5t + 4e−10t

][
u
(0)
1

u
(0)
2

]

+

∫ t

s=0

1
5

[
4e−5(t−s) + e−10(t−s) −2e−5(t−s) + 2e−10(t−s)

−2e−5(t−s) + 2e−10(t−s) e−5(t−s) + 4e−10(t−s)

] [
f1(s)
f2(s)

]
ds

2. The solution formula gives using the definition of u0(y)

u(x, t) =

∫ ∞
y=−∞

S(x− y, t)u0(y)dy =

∫ 1

y=0

S(x− y, t)ydy +
∫ ∞
y=1

S(x− y, t)dy. (1)

We first evaluate the second integral using ∂xU(x, t) = S(x, t): Hence ∂y [−U(x− y, t)] = S(x− y, t)
and∫ ∞

y=1

S(x− y, t)dy = [−U(x− y, t]∞y=1 =
[
−g(t−1/2(x− y))

]∞
y=1

= − lim
y→−∞

g(y)︸ ︷︷ ︸
0

+g(t−1/2(x− y))

using U(x− y, t) = g(t−1/2x). For the first integral in (1) we use ∂xU(x, t) = S(x, t) and integration
by parts:∫ 1

y=0

S(x− y, t)ydy = −
[
g(t−1/2(x− y))y

]1
y=0

+

∫ 1

y=0

g(t−1/2(x− y))dy = −g(t−1/2(x− 1))−
[
t1/2G(t−1/2(x− y)

]1
y=0

= −g(t−1/2(x− 1))− t1/2G(t−1/2(x− 1)) + t1/2G(t−1/2x)

yielding
u(x, t) = −t1/2G(t−1/2(x− 1)) + t1/2G(t−1/2x)



3.

(a) Let v0(x) be the piecewise linear function with values 0, 1, 0 at x = −1, 0, 1 and let w0(x) :=
2v0(x):

v0(x) =


0 x < −1
1 + x −1 < x ≤ 0

1− x 0 < x ≤ 1

0 x > 1

On the interval [−1, 0] the function v0 is a secant, the function w0 is the tangent line at x = −1.
Since u′′0 < 0 for −1 < x < 0 we must have v0(x) ≤ u0(x) ≤ w0(x). In the same way we can
obtain the inequalities for x ∈ [0, 1].
The functions u0, v0, w0 are continuous and bounded, hence the corresponding solutions u, v, w
of the heat equation are bounded classical solutions. The function ũ(x, t) := v(x, t)− u(x, t) is
also a bounded classical solution with initial data ũ(x, 0) = v0(x)−u0(x) ≤ 0. By the maximum
principle we must have ũ(x, t) = v(x, t) − u(x, t) ≤ 0 for all x ∈ R, t ≥ 0. The argument with
w(x, t) is analogous.

(b) >> heat_pwlin([-1,0,1],[0,1,0],.7,.5)

ans =

0.29411

>> heat_pwlin([-1,0,1],[0,2,0],.7,.5)

ans =

0.58822

Note that we can obtain a good approximation for u(x, t) by using a piecewise linear function
with a finer grid:

x=-1:.01:1; heat_pwlin(x,1-x.^2,.7,.5)

ans =

0.388422271734339

4.

(a) We must have u(x, 0) = v(x)w(0) = sin(2x), hence v(x) = C sin(2x). Let C = 1. Inserting
u(x, t) = sin(2x)w(t) into the PDE gives sin(2x)w′(t) = −4 sin(2x)w(t), i.e., w′(t) = −4w(t)
and w(0) = 1. Therefore w(t) = e−4t and

u(x, t) = sin(2x)e−4t.

(b) Duhamel’s principle gives with uhom(x, t) = sin(2x)e−4t

u(x, t) = uhom(x, t) +

∫ t

s=0

∫ ∞
y=−∞

S(x− y, t− s)s dy ds

Since
∫∞
x=−∞ S(x, t)dx = 1 the integration with respect to y gives

u(x, t) = uhom(x, t) +

∫ t

s=0

s ds = sin(2x)e−4t + 1
2
t2


