Assignment #2: Solution
1.

(a) Setting det(A — X)) = (6 — A\)(9 — A) = 0 gives the eigenvalues \; = 5, \y = 10. For \; =5
solving (A — A\ 1)7) = 0 gives the eigenvector 7% = [ _12 } For Ay = 10 we obtain the

eigenvector %) = [ ; } . Therefore the general solution of the ODE is
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Using the initial condition @(0) = ¢,V + ¢, = a@(® = [ 0 1 gives ¢; = 1, c; = 2 and
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Using the initial condition @(0) = c;"Y + ¢,t? = @(® = [ (1) } gives ¢; = —2, ¢ = L and
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Hence we obtain
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(b) We have
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2. The solution formula gives using the definition of uq(y)
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We first evaluate the second integral using 0,U(x,t) = S(x,t): Hence 0, [-U(z —y,t)] = S(z —y,t)
and
/ S(x —y,t)dy = [-U(r -y, 1,2, = [—g(t~ (2 — y))]zo:l = — ygglmg(y) +9(t™ V% (x —y))
y=1 N ; ,
using U(z — y,t) = g(t~/2x). For the first integral in (1) we use 9,U(x,t) = S(x,t) and integration
by parts:
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Let vo(x) be the piecewise linear function with values 0,1,0 at = = —1,0,1 and let wy(z) :=
2’00 (.1’)
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On the interval [—1, 0] the function vy is a secant, the function wy is the tangent line at z = —1.

Since ujy < 0 for —1 < x < 0 we must have vg(z) < up(x) < wp(x). In the same way we can
obtain the inequalities for x € [0, 1].

The functions ug, vy, wy are continuous and bounded, hence the corresponding solutions u, v, w
of the heat equation are bounded classical solutions. The function u(z,t) := v(z,t) — u(z,t) is
also a bounded classical solution with initial data @(x,0) = vo(x) —u(x) < 0. By the maximum
principle we must have a(x,t) = v(z,t) — u(z,t) <0 for all z € R, ¢ > 0. The argument with
w(zx,t) is analogous.

>> heat_pwlin([-1,0,1],[0,1,0],.7,.5)

ans =
0.29411
>> heat_pwlin([-1,0,1],[0,2,0],.7,.5)
ans =
0.58822

Note that we can obtain a good approximation for u(z,t) by using a piecewise linear function
with a finer grid:

x=-1:.01:1; heat_pwlin(x,1-x.72,.7,.5)
ans =
0.388422271734339

We must have u(z,0) = v(z)w(0) = sin(2z), hence v(z) = Csin(2z). Let C' = 1. Inserting
u(z,t) = sin(2x)w(t) into the PDE gives sin(2x)w'(t) = —4sin(2z)w(t), i.e., w'(t) = —4w(t)
and w(0) = 1. Therefore w(t) = e~ and

u(z,t) = sin(2z)e .

Duhamel’s principle gives with uyom(z,t) = sin(2x)e™*

t e8]
u(z,t) = Upom(z,t) + / / S(x —y,t—s)sdyds
s=0 Jy=—o0

Since fzoifoo S(z,t)dz =1 the integration with respect to y gives

t
u(,t) = Upom (2, 1) + / sds = Sin(2x)6’4t + %t2
s=0



