Assignment #3, due Wednesday, May 9

1. We consider the heat equation $u_t - 2u_{xx} = 0$ on the interval [0, 1] with boundary conditions

$$u(0,t) = 0, \qquad u_x(1,t) = 0$$

and initial condition u(x, 0) = 1. In the series for the solution u(x, t) find the **first two terms**. Hint: $\int_0^{k\pi/2} \sin^2(z) dz = \frac{k\pi}{4}$ for integer k.

2. We consider the wave equation $u_{tt} - 4u_{xx} = 0$ on the interval [0, 1] with boundary conditions

$$u(0,t) = 0, \qquad u'(1,t) = 0$$

and initial conditions $u(x, 0) = u_0(x) = 0$, $u_t(x, 0) = u_1(x) = 1$.

- (a) Use the appropriate extension to define the function $\tilde{u}_1(x)$ for all $x \in \mathbb{R}$ and sketch the graph of this function. *Hint:* use an even extension at Neumann boundary, odd extension at Dirichlet boundary.
- (b) Write down the D'Alembert formula for the extended solution $\tilde{u}(x,t)$. Use this to find $u(\frac{1}{2},\frac{1}{2})$: mark the interval over which you have to integrate $\tilde{u}_1(x)$ on your graph of $\tilde{u}_1(x)$; then find the value of $u(\frac{1}{2},\frac{1}{2})$. Evaluate $u(x,\frac{1}{2})$ for $x \in [0,1]$.
- **3.** Consider a square metal plate $G = [0, 1] \times [0, 1]$. At three sides it is cooled to temparature 0 (Dirichlet condition), at the remaining side it is insulated (Neumann condition). The temperature u(x, y, t) satisfies the heat equation $u_t 2\Delta u = 0$. We start with the initial temperature $u_0(x, y) = 1$. At what rate λ will the temperature decay, i.e., $|u(x, y, t)| \leq ce^{-\lambda t}$? For large t give an approximation to u(x, y, t). Hint: Find a solution of the form $e^{-\lambda t}v(x, y)$ with the smallest possible λ and find the coefficient C so that $u(x, y, t) = Ce^{-\lambda t}v(x, y) + \text{faster decaying terms.}$
- **4.** Consider a square membrane $G = [0,1] \times [0,1]$ which is fixed at three sides (Dirichlet conditions) and free at the remaining side (Neumann conditions). The displacement u(x, y, t) satisfies the wave equation $u_{tt} 4\Delta u = 0$. What is the lowest frequency ω which the membrane can generate? *Hint:* Find a solution of the form $u(x, y, t) = \cos(\omega t)v(x, y)$ with the smallest possible ω .