
Assignment #3, due Wednesday, May 9

1. We consider the heat equation ut − 2uxx = 0 on the interval [0, 1] with boundary conditions

u(0, t) = 0, ux(1, t) = 0

and initial condition u(x, 0) = 1. In the series for the solution u(x, t) find the first two terms.

Hint:
∫ kπ/2
0

sin2(z)dz = kπ
4

for integer k.
For the heat equation we first want to find special solutions of the form g(t)v(x) with separated variables.
Plugging this into the PDE and separating the variables gives

−v
′′(x)

v(x)
= − g

′(t)

2g(t)
= λ

Solve eigenvalue problem −v′′(x) = λv(x) on [0, 1] with boundary conditions v(0) = 0, v′(1) = 0: We have
λ > 0 and

v(x) = C1 cos(λ1/2x) + C2 sin(λ1/2x)

Now v(0) = 0 gives C1 = 0. We must have C2 6= 0, so v′(1) = 0 gives cos(λ1/2) = 0 which implies
λ1/2 = (j − 1

2
)π, j = 1, 2, 3, . . . . Therefore we have the eigenvalues λj and eigenfunctions vj(x)

λj =
[
(j − 1

2
)π
]2
, vj(x) = sin

[
(j − 1

2
)πx
]
, j = 1, 2, 3, . . .

Now we solve the problem −g′(t) = 2λjg(t) and obtain g(t) = cje
−2λjt. Therefore the special solutions are

cjvj(x)e−2λjt. The solution of the initial value problem is

u(x, t) =
∞∑
j=1

cjvj(x)e−2λjt cj =
〈u0, vj〉
〈vj, vj〉

where u0(x) = 1. Here we have

λ1 =
1

4
π2, v1(x) = sin(

π

2
x), c1 =

∫ 1

0
1 · sin(π/2)dx∫ 1

0
sin2(π/2)dx

=
2/π

1/2
=

4

π

λ2 =
9

4
π2, v2(x) = sin(

3π

2
x), c2 =

∫ 1

0
1 · sin(3π

2
x)dx∫ 1

0
sin2(3π

2
x)dx

=
2/(3π)

1/2
=

4

3π

so that we have

u(x, t) =
4

π
sin(

π

2
x) exp(−π

2

2
t) +

4

3π
sin(

3π

2
x) exp(−9π2

2
t) +R(x, t), |R(x, t)| ≤ C exp(−25π2

2
t).

2. We consider the wave equation utt − 4uxx = 0 on the interval [0, 1] with boundary conditions

u(0, t) = 0, u′(1, t) = 0

and initial conditions u(x, 0) = u0(x) = 0, ut(x, 0) = u1(x) = 1.

(a) Use the appropriate extension to define the function ũ1(x) for all x ∈ R and sketch the graph of this
function. Hint: use an even extension at Neumann boundary, odd extension at Dirichlet boundary.
We obtain a function ũ1(x) on the real axis which is periodic with period 4 and

u1(x) =

{
1 for x ∈ · · · ∪ [−4,−2] ∪ [0, 2] ∪ [4, 6] ∪ · · ·
−1 for x ∈ · · · ∪ [−2, 0] ∪ [2, 4] ∪ [6, 8] ∪ · · ·



(b) Write down the D’Alembert formula for the extended solution ũ(x, t). Use this to find u(1
2
, 1
2
): mark

the interval over which you have to integrate ũ1(x) on your graph of ũ1(x); then find the value of
u(1

2
, 1
2
). Evaluate u(x, 1

2
) for x ∈ [0, 1].

Here c = 2, u0(x) = 0, hence ũ0(x) = 0 and the D’Alembert formula gives for x ∈ [0, 1]

ũ(x, t) =
1

2c

∫ x+ct

y=x−ct
ũ1(y)dy =

1

4

∫ x+2t

x−2t
ũ1(y)dy

u(1
2
, 1
2
) =

1

4

∫ 1
2
+2( 1

2
)

1
2
−2( 1

2
)

ũ1(y)dy =
1

4

∫ 3
2

− 1
2

ũ1(y)dy =
1

4

(∫ 0

− 1
2

(−1)dy +

∫ 3
2

0

1dy

)
=

1

4

(
−1

2
+

3

2

)
=

1

4

u(x, 1
2
) =

1

4

∫ x+2( 1
2
)

x−2( 1
2
)

ũ1(y)dy =
1

4

∫ x+1

x−1
ũ1(y)dy =

1

4

(∫ 0

x−1
(−1)dy +

∫ x+1

0

1dy

)
=

1

4
((x− 1) + (x+ 1)) =

x

2

3. Consider a square metal plate G = [0, 1] × [0, 1]. At three sides it is cooled to temparature 0 (Dirichlet
condition), at the remaining side it is insulated (Neumann condition). The temperature u(x, y, t) satisfies
the heat equation ut − 2∆u = 0. We start with the initial temperature u0(x, y) = 1. At what rate λ
will the temperature decay, i.e., |u(x, y, t)| ≤ ce−λt? For large t give an approximation to u(x, y, t). Hint:
Find a solution of the form e−λtv(x, y) with the smallest possible λ and find the coefficient C so that
u(x, y, t) = Ce−λtv(x, y) + faster decaying terms.
Assume we have Dirichlet conditions on the left, bottom and top side of the square and Neumann conditions
on the right side of the square:

u(0, y, t) = 0, ux(1, y, t) = 0, u(x, 0, t) = 0, u(x, 1, t) = 0

Separation of variables: Find special solutions v(x, y)g(t), plugging this into the PDE gives

−∆v(x, y)

v(x, y)
= − g

′(t)

2g(t)
= λ

Solve eigenvalue problem −vxx(x, y) − vyy(x, y) = λv(x, y) on [0, 1] × [0, 1] with boundary conditions
v(0) = 0, v′(1) = 0: Try to find eigenfunctions v(x, y) = p(x)q(y) with separated variables. Plugging this
into the eigenvalue equation gives

−p′′(x)

p(x)︸ ︷︷ ︸
µ

+
−q′′(y)

q(y)︸ ︷︷ ︸
ν

= λ

with constants µ, µ̃. This means for p(x) and µ

−p′′(x) = µp(x), p(0) = 0, p′(1) = 0

so we obtain from problem 1 that

µj =
[
(j − 1

2
)π
]2
, pj(x) = sin

[
(j − 1

2
)πx
]
, j = 1, 2, 3, . . .

We have for q(y) and µ̃ that

−q′′(y) = νq(y), q(0) = 0, q(1) = 0

so we obtain
νk = [kπ]2 , qk(y) = sin [kπy] , k = 1, 2, 3, . . .

Therefore the eigenvalues λjk and eigenfunctions vjk(x, y) for the eigenvalue problem in the square are

λjk = µj+νk =
[
(j − 1

2
)π
]2

+[kπ]2 , vjk(x, y) = sin
[
(j − 1

2
)πx
]

sin [kπy] , j = 1, 2, . . . , k = 1, 2, . . .



The smallest eigenvalue is λ11 = (π
2
)2 + π2 = 5

4
π2 with the eigenfunction v11(x, y) = sin(π

2
x) sin(πy). As in

problem 1 we obtain g(t) = cjke
−2λjkt. Therefore the solution of the initial value problem is

u(x, y, t) =
∞∑
j=1

∞∑
k=1

cjkvjk(x, y)e−2λjkt, cjk =
〈u0, vjk〉
〈vjk, vjk〉

Here

〈u0, vjk〉 = 〈1, pj(x)qk(y)〉 =

(∫ 1

0

pj(x)dx

)(∫ 1

0

qk(y)dy

)
〈vjk, vjk〉 = 〈pj(x)qk(y), pj(x)qk(y)〉 =

(∫ 1

0

pj(x)dx

)(∫ 1

0

qk(y)dy

)
so we have

c11 =

(∫ 1

0
sin(π

2
x)dx

)(∫ 1

0
sin(πy)dy

)
(∫ 1

0
sin2(π

2
x)dx

)(∫ 1

0
sin2(πy)dy

) =

(
2
π

) (
2
π

)(
1
2

) (
1
2

) =
16

π2

and

u(x, y, t) =
16

π2
sin(

π

2
x) sin(πy) exp

(
−5π2

2
t

)
+R(x, y, t), |R(x, y, t)| ≤ C ′ exp(−λ21t) = C ′ exp

(
−13π2

2
t

)
and |u(x, y, t)| ≤ C exp(−λ11t) = C exp(−5π2

2
t).

4. Consider a square membrane G = [0, 1] × [0, 1] which is fixed at three sides (Dirichlet conditions) and
free at the remaining side (Neumann conditions). The displacement u(x, y, t) satisfies the wave equation
utt − 4∆u = 0. What is the lowest frequency ω which the membrane can generate? Hint: Find a solution
of the form u(x, y, t) = cos(ωt)v(x, y) with the smallest possible ω.
Separation of variables: Find special solutions v(x, y)g(t). For v(x, y) we obtain the same eigenvalue
problem as in problem 3. For g(t) we have

−g′′(t)
4g(t)

= λjk, −g′′(t) = 4λjkg(t).

This ODE has the general solution

g(t) = Ajk cos(ωjkt) +Bjk sin(ωjkt) ωjk = 2λ
1/2
jk .

Therefore we can write the solution of the initial value problem as

u(x, y, t) =
∞∑
j=1

∞∑
k=1

vjk(x, y) [Ajk cos(ωjkt) +Bjk sin(ωjkt)]

where the coefficients Ajk and Bjkare determined from the initial conditions u0(x, y) and u1(x, y). We see
that the possible frequencies of the membrane are

ωjk = 2λ
1/2
jk = 2

[
(j − 1

2
)2 + k2

]1/2
π, j = 1, 2, . . . , k = 1, 2, . . .

The lowest possible frequency of the membrane is therefore

ω11 = 2λ
1/2
11 = 2

[
5

4

]1/2
π = π

√
5


