
1. Review: Eigenvalue problem for a symmetric matrix

1.1. Inner products

For vectors u,v ∈ Rn we define the inner product by

〈u,v〉 :=
n

∑
i=1

uivi

and the norm by
‖u‖ := 〈u,u〉 .

We call two vectors u,v orthogonal if 〈u,v〉= 0.

Recall the Cauchy-Schwarz inequality: For any u,v ∈ Rn

|〈u,v〉| ≤ ‖u‖‖v‖ . (1)

For a matrix A ∈ Rn×n we have
〈Au,v〉=

〈
u,A>v

〉
where A> denotes the transpose matrix. If A = A> we call the matrix symmetric.

Lemma 1.1. For a symmetric A ∈ Rn×n we have

max
‖u‖=1

|〈Au,u〉|= max
‖u‖=1

‖Au‖ (2)

Proof. Let M1 denote the value of the maximum on the left, let M2 denote the value of the maximum on the right. By
Cauchy-Schwarz (1) we have for any w

|〈Aw,w〉| ≤ ‖Aw‖‖w‖ ≤M2 ‖w‖2 , (3)

hence M1 ≤M2. Next we show M2 ≤M1: For an arbitrary u with ‖u‖= 1 we let λ := ‖Au‖, f := λu, g := Au and consider

X := 〈A f ,g〉+ 〈Ag, f 〉= λ 〈Au,Au〉+λ
〈
A2u,u

〉︸ ︷︷ ︸
〈Au,Au〉

= 2λ ‖Au‖2 = 2λ
3.

On the other hand we see by multiplying out and using 〈Aw,w〉 ≤M1 ‖w‖2 that

X = 1
2 〈A( f +g), f +g〉− 1

2 〈A( f −g), f −g〉 ≤ M1

2
〈 f +g, f +g〉+ M1

2
〈 f −g, f −g〉= M1

(
‖ f‖2 +‖g‖2

)
= M12λ

2,

hence we have X = 2λ 3 ≤M12λ 2. Therefore λ = ‖Au‖ ≤M1 and hence M2 ≤M1 (since u with ‖u‖= 1 is arbitrary).

Now consider an invariant subspace V of A. This means that u ∈V implies Au ∈V . Then we obtain by the same argument

max
u∈V
‖u‖=1.

|〈Au,u〉|= max
u∈V
‖u‖=1.

‖Au‖ (4)
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1.2. Eigenvalue problem

Let A be a real n× n matrix. A number λ ∈ C is called an eigenvalue of the matrix if there exists a nonzero vector v ∈ Cn

such that
Av = λv. (5)

All eigenvalues are real: Multiplying (5) from the left by ~v
>

(bar denotes complex conjugate) gives v>Av = λv>v. Since
A> = A we have v>Av = (Av)

>
v = λv>v yielding λ = λ .

Eigenvectors for different eigenvalues are orthogonal:

λ j

〈
v( j),v(k)

〉
=
〈

Av( j),v(k)
〉
=
〈

v( j),Av(k)
〉
= λk

〈
v( j),v(k)

〉
, hence (λ j−λk)

〈
v( j),v(k)

〉
= 0

The central result is that we have a full number of eigenvectors:

Theorem 1.2. Assume that A ∈ Rn×n is symmetric. Then

1. There are n real eigenvalues λ1, . . . ,λn

2. There are corresponding real eigenvectors v(1), . . . ,v(n) which are orthogonal on each other.

3. Any vector u ∈ Rn can be written as a linear combination of eigenvectors:

u =
n

∑
j=1

c jv( j), c j =

〈
u,v( j)

〉〈
v( j),v( j)

〉
The key idea of the proof is to maximize |〈Au,u〉| over all u with ‖u‖= 1. The solution of this problem yields an eigenvector:

Lemma 1.3. Assume that A ∈ Rn×n is symmetric and V is an invariant subspace, i.e., v ∈V implies Av ∈V .

1. There exists v ∈V with ‖v‖= 1 such that |〈Av,v〉| is maximal:

|〈Av,v〉|= M = max
u∈V
‖u‖=1.

|〈Au,u〉|

2. Actually v is an eigenvector: There is λ ∈ R with

Av = λv, |λ |= M

Proof. Here we are maximizing a continuous function over a compact set, so there exists such a v with ‖v‖ = 1 . Let
λ := 〈Av,v〉. By (4) we have ‖Av‖ ≤ |λ | and hence

‖Av−λv‖2 = ‖Av‖2−2λ 〈Av,v〉︸ ︷︷ ︸
λ

+λ
2 ‖v‖2︸︷︷︸

1

≤ λ
2−2λ

2 +λ
2 = 0.

Now we can give the proof of Theorem 1.2:

First maximize |〈Au,u〉| over all u ∈ Rn with ‖u‖= 1. By Lemma 1.3 this yields a vector v(1) and an eigenvalue λ1. Define
the space V1 as all vectors which are orthogonal on v(1):

V1 := {u ∈ Rn |
〈

u,v(1)
〉
= 0}.

This is an invariant subspace: If u ∈V1, then Au satisfies〈
Au,v(1)

〉
=
〈

u,Av(1)
〉
= λ1

〈
u,v(1)

〉
u∈V1= 0,
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hence Au ∈V1.

Now we maximize |〈Au,u〉| over all u ∈ V1 with ‖u‖ = 1. By Lemma 1.3 this yields a vector v(2) and an eigenvalue λ2.
Define the space V2 as all vectors which are orthogonal on v(1) and v(2):

V2 := {u ∈ Rn |
〈

u,v( j)
〉
= 0 for j = 1,2}.

This is an invariant subspace: If u ∈V2, then Au satisfies for j = 1,2〈
Au,v( j)

〉
=
〈

u,Av( j)
〉
= λ j

〈
u,v( j)

〉
u∈V2= 0,

hence Au ∈V2.

By continuing in the same way we obtain eigenvalues λ1, . . . ,λn with

|λ1| ≥ |λ2| ≥ · · · ≥ |λn|

and eigenvectors v(1), . . . ,v(n) which are by construction orthogonal on each other.

2. Review: Linear System of ODEs

2.1. Initial value problem

We consider a matrix of size n× n where the entries can depend on t: Let A(t) be an n× n matrix with entries ai j(t) for
i, j = 1 . . .n. We are given an initial vector ~u(0) with entries u(0)i , i = 1 . . .n and a right hand side function ~f (t) with entries
fi(t), i = 1 . . .n. We want to find a function~u(t) with entries ui(t), i = 1 . . .n such that

~u′(t)+A(t)~u(t) = ~f (t) for t ≥ 0 (6)

~u(0) =~u(0) (7)

If the function ~f (t) is zero we call the problem homogeneous.

If the functions ai j(t) and fi(t) are continuous for t ≥ 0, then one can show that the initial value problem (6), (7) has a unique
solution for all t ≥ 0.

2.2. Homogeneous ODE with constant coefficients, symmetric matrix

We now consider a special case of (6), (7):

• ~f (t) =~0 (homogeneous ODE)

• the matrix A is constant

• the matrix A is symmetric: A = A>.

Then we can solve the IVP in the following way:

1. Find special solutions of the form ui(t) = vig(t):

We want to find solutions of the form ~u(t) =~vg(t) with a nonzero vector~v and a function g(t). Plugging this into the
ODE gives

~vg′(t)+A~vg(t) =~0 ⇐⇒ A~v =
−g′(t)

g(t)
~v

(if we assume g(t) 6= 0). Since the left hand side does not depend on t and ~v is not the zero vector this equation can
only hold if −g′(t)/g(t) is equal to a constant λ .
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Therefore we have to solve an eigenvalue problem: Find λ and a vector~v (not the zero vector) such that

A~v = λ~v

Solving this eigenvalue problem gives real eigenvalues λ j and eigenvectors~v( j) for j = 1, . . . ,n which are orthogonal
on each other: 〈

~v( j),~v(k)
〉
= 0 if j 6= k. (8)

For each eigenvector ~v( j) we have now a special solution of the PDE: Since −g′(t)
g(t)

= λ j we have g(t) = c je−λ jt and

our special solution is
c j~ve−λ jt

for j = 1,2,3, . . . .

2. Write the solution ~u(t) of the initial value problem as a linear combination of the special solutions: We need to
find coefficients c1, . . . ,cn such that

~u =
∞

∑
j=1

c j~v( j)e−λ jt (9)

We find the coefficients by setting t = 0: Then the initial condition gives

~u(0) =
∞

∑
j=1

c j~v( j) (10)

We now take the inner product of this equation with the vector ~v(k): Then the orthogonality (8) gives
〈
~u(0),~v(k)

〉
=

ck
〈
~v(k),~v(k)

〉
or

ck =

〈
~u(0),~v(k)

〉〈
~v(k),~v(k)

〉 (11)

2.3. Fundamental System S(t)

Let~u(1)(t) denote the solution of the homogeneous ODE with initial condition~u(1)(0) = [1,0, . . . ,0]>, . . . , Let~u(n)(t) denote
the solution with initial condition~u(n)(0) = [1,0, . . . ,0]>. We define the n×n matrix

S(t) :=
[
~u(1)(t), . . . ,~u(n)(t)

]
.

Now the solution of the homogeneous ODE with initial condition ~u(0) = ~u(0) is obtained as a linear combination of
~u(1)(t), . . . ,~u(n)(t): We have~u(t) =~u(1)(t) ·u(0)1 + · · ·+~u(n)(t) ·u(0)n , i.e.,

~u(t) = S(t)~u(0)

2.4. Duhamel’s principle

2.4.1. Review: Derivative of integral

We consider a function F(t) defined as an integral

F(t) =
∫ b(t)

a(t)
f (s, t)ds.

Then the fundamental theorem of calculus and the chain rule imply that we have for the derivative

F ′(t) =
∫ b(t)

a(t)
ft(s, t)ds+ f (b(t), t) ·b′(t)− f (a(t), t) ·a′(t). (12)
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2.4.2. General case

Duhamel’s principle states: If we can solve the homogeneous initial value problem

~u′(t)+A(t)~u(t) =~0 for t ≥ s (13)

~u(s) =~u(0) (14)

(here the initial condition is given at s instead of 0), then we can obtain a formula for the solution of the inhomogeneous
initial value problem (6), (7) as follows:

1. Define the function~uhom(t) for t ≥ 0 as the solution of the homogeneous initial value problem with initial condition

~uhom(0) =~u(0)

2. Define for any s > 0 the function~z(s)(t) for t ≥ s as the solution of the homogeneous initial value problem with initial
condition

~z(s)(s) = ~f (s)

3. Now the solution~u(x, t) of the inhomogeneous initial value problem (6), (7) is given by

~u(t) =~uhom(t)+
∫ t

s=0
~z(s)(t)ds (15)

The proof is easy: For the particular solution~upart(t) :=
∫ t

s=0~z(s)(t)ds we have obviously~upart(0) =~0. Using (12) we obtain

~u′part(t) =
∫ t

s=0
~z′(s)(t)ds+~z(t)(t)︸ ︷︷ ︸

~f (t)

Since~z′(s)(t)+A~z(s)(t) =~0 we obtain~u′part(t)+A~upart(t) = ~f (t).

2.4.3. Case of ODE with constant coefficients

If we have a constant coefficient matrix A and a fundamental system S(t) (which is an n×n matrix) we can use Duhamel’s
principle as follows:

1. The homogeneous solution is obtained as
~uhom(t) = S(t)~u(0)

2. The solution~z(s)(t) is obtained as
~z(s)(t) = S(t− s)~f (s)

3. The solution~u(x, t) of the inhomogeneous problem is therefore

~u(t) = S(t)~u(0)+
∫ t

s=0
S(t− s)~f (s)ds
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3. Heat Equation

3.1. Derivation as conservation law

We consider a long thin bar of some material. Let u(x, t) denote the temperature at time t at position x along the bar. The
temperature corresponds to heat energy stored in the bar. Let r > 0 denote the energy needed to increase the temperature of
a bar of length 1 by 1 degree. This differs for different materials (“specific heat”). If the material (or the cross section of the
bar) is not constant in x we have a function r(x)> 0. Then the total energy stored in the bar between x = a and x = b at time
t is

Eab(t) =
∫ b

a
r(x)u(x, t)dx (16)

Because of the conservation of energy this can only change in time if heat flows across the endpoints a and b. Let F(x, t)
denote the heat flux at the point x at the time t, i.e., the amount of energy which flows across x (from left to right) per time
unit. Therefore we must have

E ′ab(t) = F(a, t)−F(b, t) (17)

since F(a, t) is the energy per time coming in at the left endpoint, and F(b, t) is the energy per time coming out at the right
endpoint. We can now rewrite the left hand side and the right hand side of this equation as follows:∫ b

a
r(x)∂tu(x, t)dx =−

∫ b

a
∂xF(x, t)dx ⇐⇒

∫ b

a

[
r(x)∂tu(x, t)+∂xF(x, t)

]
dx = 0.

This equation has to hold for all a,b along the bar, hence we must have

r(x)∂tu(x, t)+∂xF(x, t) = 0. (18)

The heat flux F(x, t) should be proportional to the change in temperature in x (“Fourier’s law of cooling”). The energy should
flow from the hotter to the colder region. Therefore we should have with a constant κ > 0 (“heat conductivity”) that

F(x, t) =−κ∂xu(x, t). (19)

If the material is not constant in x we may have a function κ(x)> 0 for the heat conductivity. Then we obtain from (18), (19)
the PDE

r(x)∂tu(x, t)−∂x [κ(x)∂xu(x, t)] = 0.

This is the most general form of the heat equation. It is a linear homogeneous PDE. If we additionally have heat sources
which give additional energy f (x, t) per space and time unit at position x and time t we obtain the inhomogeneous PDE

r(x)∂tu(x, t)−∂x [κ(x)∂xu(x, t)] = f (x, t)

We will mainly consider the case where the material properties are constant in x: Then the functions r and κ are constant,
and we have with k := κ/r that

ut(x, t)− kuxx(x, t) = f (x, t)

3.1.1. Initial value problem for infinite bar

For an infinite bar we want to find a function u(x, t) with x ∈ R and t > 0. We prescribe the initial temperature u0(x) at time
zero. We obtain the following initial value problem:

Find a function u(x, t) for x ∈ R and t ≥ 0 such that

r(x)ut(x, t) = ∂x [κ(x)ux(x, t)] for x ∈ R, t > 0 (20)

u(x,0) = u0(x) for x ∈ R (21)
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3.1.2. Initial value problem for bar of finite length

It is more realistic to consider a bar of finite length where a ≤ x ≤ b. In this case we want to find a function u(x, t) with
x ∈ [a,b] and t > 0. We have to specify what happens at the boundary points x = a and x = b. There are three reasonable
choices for x = a:

• Dirichlet condition (D): We prescribe the temperature at x = a for all times:

u(a, t) = g1(t) for t > 0

If the left end of the bar touches a large pool of ice water, we will have (approximately) u(a, t) = 0 (in degree Celsius).
Note that in this case the heat flux across x = a is in general nonzero, so the total energy in the bar is not conserved.

• Neumann condition (N): We prescribe the heat flux at x = a for all times:

κ(a)ux(a, t) = g1(t) for t > 0

If the left end of the bar touches a perfect insulator we will have κ(a)ux(a, t) = 0. Note that in this case no energy
crosses the boundary at x = a.

• Robin condition (R): Assume that we have a thin imperfect insulator with temperature q(t) on the other side of the
insulator. Then it is reasonable to assume that the heat flux to the left is proportional to the temperature difference on
both sides of the insulator: With a constant α1 > 0 we have

κ(a)ux(a, t) =−α [u(a, t)−q(t)]

or
κ(a)ux(a, t)+α1u(a, t) = g1(t)

We also have three choices for the boundary condition at x = b:

• Dirichlet condition (D): u(b, t) = g2(t)

• Neumann condition (N): κ(b)ux(b, t) = g2(t)

• Robin condition (R) with a constant α2 > 0: κ(b)ux(b, t)−α2u(b, t) = g2(t)

We can have any of the 9 combinations (DD), (DN), (DR),. . . , (RR) for the boundary conditions at the left and right
endpoints.

We obtain the following initial value problem:

Find a function u(x, t) for x ∈ R and t ≥ 0 such that for t > 0 we have the PDE

r(x)ut(x, t) = ∂x [κ(x)ux(x, t)] for x ∈ (a,b)

and boundary conditions of the types (D), (N), (R) at x = a and x = b. For t = 0 we have the initial condition

u(x,0) = u0(x) for x ∈ (a,b).

We prescribe the initial temperature u0(x) at time zero.

Remark 3.1. If we have homogeneous Neumann conditions at both endpoints, i.e.,

ux(a, t) = 0, ux(b, t) = 0 for t > 0

then the heat flux at both endpoints is zero and (17) shows that the total energy Eab(t) must be constant:∫ b

a
r(x)u(x, t)dt =

∫ b

a
r(x)u0(x)dx.

In all other cases we may have heat flow across one of the boundaries and therefore the total energy in [a,b] may change.
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3.2. Maximum Principle

We now consider the heat equation ut = kuxx with a constant k > 0.

3.2.1. Maximum principle for interval

Theorem 3.2. Assume u(x, t) is a classical solution of the heat equation for x ∈ [a,b], t ∈ [0,T ]. This means that u is
continuous for x ∈ [a,b], t ∈ [0, t], and the functions ut ,uxx are continuous for x ∈ (a,b), t ∈ (0,T ] and satisfy

ut(x, t) = kuxx(x, t) for x ∈ (a,b), t ∈ (0,T ].

Then we have

max
x∈[a,b]
t∈[0,T ]

u(x, t) = max
{

max
x∈[a,b]

u(x,0), max
t∈[0,T ]

u(a, t), max
t∈[0,T ]

u(b, t)
}
.

3.2.2. Maximum principle for real line

Theorem 3.3. Assume u(x, t) is a bounded classical solution of the heat equation for x ∈ R, t ∈ [0,T ]. This means that u is
continuous for x ∈ R, t ∈ [0,T ] and there exists C such that

|u(x, t)| ≤C x ∈ R, t ∈ [0,T ].

Furthermore the functions ut ,uxx are continuous for x ∈ (a,b), t ∈ (0,T ] and satisfy

ut(x, t) = kuxx(x, t) for x ∈ (a,b), t ∈ (0,T ].

Then we have
max

x∈[a,b]
t∈[0,T ]

u(x, t) = max
x∈[a,b]

u(x,0).

3.2.3. Consequences

Note that we also have “minimum principles” with “min” instead of “max”. (Just apply the maximum principle to −u(x, t)).

Uniqueness of solution for IVP on the real line: Assume we have two bounded classical solutions u(x, t) and ũ(x, t)
which solve the same initial value problem on the real line. Then the difference v(x, t) = u(x, t)− ũ(x, t) solves the initial
value problem with zero initial data. By Theorem 3.3 we therefore must have v(x, t) = 0.

Uniqueness of solution for IBVP on an interval with Dirichlet conditions: Assume we have two classical solutions
u(x, t) and ũ(x, t) which solve the same IBVP for an interval x ∈ [a,b]. Then the difference v(x, t) = u(x, t)− ũ(x, t) solves
the IBVP with zero initial data and zero boundary data. By Theorem 3.3 we therefore must have v(x, t) = 0.

Montonicity: Assume we have two initial functions u0(x) and ũ0(x) on the real line with

u0(x)≤ ũ0(x) for all x ∈ R.

Then we must have
u(x, t)≤ ũ(x, t) for all x ∈ R, t ≥ 0

for the corresponding solutions of the IVP for the heat equation. (Just apply the maximum principle to v(x, t) = ũ(x, t)−
u(x, t).)

We obtain a similar monotonicity property for the IBVP on an interval with Dirichlet conditions.
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“Well-posedness”: This means that small changes in the given data only cause small changes in the solution. Consider
the IBVP on an interval with Dirichlet conditions with given functions u0(x), g1(t), g2(t) which yields a solution u(x, t).
Consider slightly different given functions ũ0(x), g̃1(t), g̃2(t) with

|u0(x)− ũ0(x)| ≤ ε, |g1(t)− g̃1(t)| ≤ ε, |g2(t)− g̃2(t)| ≤ ε.

We claim that we then must have for the corresponding solution ũ(x, t) that

|u(x, t)− ũ(x, t)| ≤ ε for all x ∈ [a,b], t ≥ 0.

We can prove this by considering u0,−(x) := u0(x)− ε , g1,−(t) := g1(t)− ε , g2,−(t) := g2(t)− ε . By the monotonicity we
must have for the corresponding solution u−(x, t) that

u(x, t)− ε ≤ u−(x, t)≤ ũ(x, t)

yielding u(x, t)− ũ(x, t)≤ ε . By considering u0,+(x) := u0(x)+ ε etc. we obtain ũ(x, t)−u(x, t)≤ ε.

3.3. Heat equation on the real line

3.3.1. Initial value problem for homogeneous case

We want to find a function u(x, t) for x ∈ R and t ≥ 0 such that

ut(x, t) = kuxx(x, t) for x ∈ R, t > 0 (22)

u(x,0) = u0(x) for x ∈ R (23)

For a classical solution the function u(x, t) must be continuous for x ∈ R, t ≥ 0. Moreover, the derivatives ut , uxx must be
continuous functions for x ∈ R and t > 0.

3.3.2. Invariance properties

Assume that u(x, t) and ũ(x, t) are solutions of the heat equation (22) for x ∈ R, t > 0. Then we can obtain other solutions
v(x, t) of the heat equation as follows:

1. Linearity of the problem: For any c1,c2 ∈ R

v(x, t) := c1u(x, t)+ c2ũ(x, t)

is also a solution of the heat equation (22).

2. Translation invariance in time: For any c≥ 0

v(x, t) := u(x, t + c)

is also a solution of the heat equation (22).

3. Translation invariance in space: For any c ∈ R

v(x, t) := u(x− c, t)

is also a solution of the heat equation (22).

4. Dilation invariance: For any a > 0
v(x, t) := u(a1/2x,at)

is also a solution of the heat equation (22).

Note that the properties (1.) and (2.) also hold in the more general problem with functions r(x), κ(x), both for the problem
on the infinite bar, and for the problem on the finite bar.

Note that the properties (3.), (4.) only hold in the case of constant r,κ and for an infinite bar.
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3.3.3. Solution U(x, t) where initial condition is step function

We will first consider the heat equation ut = uxx with k = 1. We first consider the initial condition given by the Heaviside
function (unit step function):

u0(x) =

{
0 for x < 0
1 for x > 0

(24)

(we can define e.g. u0(0) = 1
2 , though this does not really matter). We want to find a solution U(x, t) of the heat equation

(22) such that

lim
t→0

U(x, t) =

{
0 for x < 0
1 for x > 0

(25)

We assume that we have a solution U(x, t) with this initial condition. We will analyze its properties which will lead us to a
formula for U(x, t).

Let
g(x) :=U(x,1)

denote the solution at time t = 1. We want to show that the solution at any time t > 0 is a dilation of this function g. We use
the dilation invariance of the heat equation: for any a > 0 the function

Ũ(x, t) :=U(a1/2x,at)

also satisfies Ũt = Ũxx. Note that the function Ũ(x, t) satisfies the same initial condition (25) as U(x, t). Therefore the
difference V (x, t)=U(x, t)−Ũ(x, t) satisfies the heat equation with initial condition zero. Therefore we should have V (x, t)=
0.

[The function V (x, t) is continuous for t > 0, but we don’t know this for x = 0, t = 0. So we cannot directly apply our
maximum principle. But one can use a slightly more general version to show V (x, t) = 0.]

Therefore we should have U(x, t) =U(a1/2x,at) for any a > 0. Choosing a = t−1 gives

U(x, t) =U(t−1/2x,1) = g(t−1/2x). (26)

We can now find the function g by plugging U(x, t) = g(t−1/2x) into the PDE Ut =Uxx and obtain

g′(t−1/2x)(−1
2)t
−3/2x = g′′(t−1/2x)t−1

−1
2(t
−1/2x)g′(t−1/2x) = g′′(t−1/2x)

−1
2 sg′(s) = g′′(s)

Let g̃(t) := g′(t), then we obtain the first order linear ODE

g̃′(s)+
s
2

g̃(s) = 0

which we can easily solve by using the integrating factor µ(s) = es2/4 yielding the general solution

g̃(s) =C1e−s2/4

g(s) =C1

∫ s

0
e−p2/4d p+C2

with C1,C2 ∈R. We now use the initial condition (25) for U(x, t) = g(t−1/2x): For x > 0 we must have U(x, t)→ 1 as t→ 0,
i.e.,

g(s)→ 1 as s→ ∞.

For x < 0 we must have U(x, t)→ 0 as t→ 0, i.e.,

g(s)→ 0 as s→−∞.
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Recall that ∫
∞

−∞

e−z2
dz =

√
π

and hence with the change of variables p/2 = z, d p = 2dz∫
∞

0
e−p2/4d p = 2

∫
∞

0
e−z2

dz =
√

π. (27)

Therefore we obtain

lim
s→∞

g(s) =C1
√

π +C2
!
= 1

lim
s→−∞

g(s) =−C1
√

π +C2
!
= 0

yielding 2C2 = 1 and 2C1
√

π = 1, i.e.,

g(s) = 1
2 +

1
2

1
π

∫ s

0
e−p2/4d p = 1

2 +
1
2

2
π

∫ s/2

0
e−z2

dz = 1
2 +

1
2 erf(s/2)

with the “error function” erf(x) := 2
π

∫ x
0 e−x2

dx (which is available in Matlab and most programming languages). Therefore
we obtain for the solution of our initial value problem

U(x, t) = g(t−1/2x), with g(s) = 1
2 +

1
2 erf(s/2)

This function satisfies the heat equation Ut(x, t) =Uxx(x, t) for x ∈ R, t > 0. For t→ 0 it satisfies the initial condition

lim
t→0

U(x, t) =


0 for x < 0
1
2 for x = 0
1 for x > 0

3.3.4. Fundamental solution

We define the fundamental solution S(x, t) by taking the partial derivative with respect to x of U(x, t):

S(x, t) := ∂xU(x, t) = ∂xg(t−1/2x) = t−1/2g′(t−1/2x).

Recall that g′(s) = g̃(s) =
1

2
√

π
e−s2/4 yielding

S(x, t) =
1

2
√

πt
exp
(
−x2

4t

)
The function U(x, t) satisfies for t > 0 the heat equation Ut(x, t) = Uxx(x, t). By taking the partial derivative of this with
respect to x we obtain that St(x, t) = Sxx(x, t), so S(x, t) also satisfies the heat equation. The initial condition of U(x, t) is
the step function u0(x) in (24). Hence the initial condition of S(x, t) should be the derivative u′0(x). The derivative of the
step function does not exist as a classical function. However, in the sense of generalized functions (a.k.a. distributions) the
derivative of the step function is the delta function: Formally, we have

S(x,0) = δ (x).

The “delta function” has an infinitely sharp peak at x = 0, so that its integral is 1. Recall that the delta function formally
satisfies for any continuous function f that ∫

∞

x=−∞

f (x)δ (x)dx = f (0).

11



Therefore we have for a continuous function u0(x)

u0(x) =
∫

∞

y=−∞

u0(y)δ (x− y)dy

i.e., we express u0 formally as an “infinite linear combination of shifted delta functions”. Analogously we now want to write
the solution of the heat equation using the shifted fundamental solutions S(x− y, t) multiplied by u0(y). We claim that the
solution of the initial value problem with u(x,0) = u0(x) is given by

u(x, t) =
∫

∞

y=−∞

S(x− y, t)u0(y)dy

We now have to prove that this formula really gives a solution for the initial value problem. We assume that the function
u0(x) is continuous and bounded for x ∈ R.

First we have to show that the integral exists as an improper integral for t > 0. This follows from the fact that u0(x) is
bounded and the fast decay of S(x, t) for z→ ∞ and z→−∞. Note that also the functions ∂tS(x, t) and ∂zS(z, t) decay fast
for for z→ ∞ and z→−∞, hence also the integrals∫

∞

y=−∞

∂tS(x− y, t)u0(y)dy,
∫

∞

y=−∞

∂
2
x S(x− y, t)u0(y)dy

exist for t > 0 as improper integrals. One can see that these integrals must be equal to ut(x, t) and uxx(x, t), respectively.
Since S(x, t) satisfies the heat equation we have

∂tS(x− y, t) = ∂
2
x S(x− y, t)

and hence ut(x, t) = uxx(x, t).

Note that for any t > 0 with z = t−1/2x, dz = t−1/2dx∫
∞

−∞

S(x, t)dx =
1

2
√

πt

∫
∞

x=−∞

exp
(
−x2

4t

)
dx =

1
2
√

π

∫
∞

z=−∞

exp
(
−z2

4

)
dz = 1

by (27). This makes sense since the integral of the delta function is 1, i.e., initially we have total energy 1. Since the total
energy on the real line is preserved we must have that the integral over the solution is 1 at all times. We also have

q(R) :=
1

2
√

π

∫ R

z=−R
exp
(
−z2

4

)
dz→ 1 as R→ ∞. (28)

1
2
√

πt

∫ r

x=−r
exp
(
−x2

4t

)
dx = q(t−1/2r) (29)

With the change of variables w = x− y, dw =−dy we have

u(x, t) =
∫

∞

y=−∞

S(x− y, t)u0(y)dy =
∫

∞

w=−∞

S(w, t)u0(x−w)dw

Consider now a fixed point x0. We want to show that u(x0, t)→ u0(x0) as t→ 0. We split the integral over R into two parts
(−t1/4, t1/4) and R\ (−t1/4, t1/4):

u(x, t) = I1 + I2

I1 :=
∫ t1/4

−t1/4
S(w, t)u0(x0−w)dw, I2 :=

∫
R\(−t1/4,t1/4)

S(w, t)u0(x0−w)dw

As u0(x) is bounded there exists C with |u0(x)| ≤C. We then have using (29)

|I2| ≤C
∫
R\(−t1/4,t1/4)

S(w, t)dw =C
[
1−q(t−1/4)

]
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and we have for t→ 0
|I2| →C(1−1) = 0.

For I1 we can find upper and lower bounds by using the maximum and minimum of u0(x):(
min

x0−t1/4≤x≤x0+t1/4
u0(x)

)
q(t−1/4)≤ I1 ≤

(
max

x0−t1/4≤x≤x0+t1/4
u0(x)

)
q(t−1/4)

For t → 0 we have that the min and max must converge to u0(x0) by the continuity of u0, and we have that q(t−1/4)→ 1,
hence

I1→ u0(x0) as t→ 0.

Therefore we have for each fixed x0 ∈ R that
lim
t→0

u(x, t) = u0(x).

3.3.5. Problem with sources (inhomogeneous case)

For the inhomogeneous heat equation

ut(x, t)−uxx(x, t) = f (x, t) x ∈ R, t > 0

with heat sources f (x, t) we can now apply the Duhamel principle:

1. We find the function uhom(x, t) by solving the homogeneous heat equation with initial condition at t = 0

uhom(x,0) = u0(x)

yielding

uhom(x, t) =
∫

∞

y=−∞

S(x− y, t)u0(y)dy.

2. For s > 0 we find the function z(s)(x, t) by solving the homogeneous heat equation with initial condition at t = s

z(s)(x,s) = f (x,s)

yielding

z(s)(x, t) =
∫

∞

y=−∞

S(x− y, t− s) f (y,s)dy.

3. Now the solution u(x, t) of the inhomogeneous initial value problem (6), (7) is given by

u(x, t) = uhom(x, t)+
∫ t

s=0
z(s)(x, t)ds

u(x, t) =
∫

∞

y=−∞

S(x− y, t)u0(y)dy+
∫ t

s=0

∫
∞

y=−∞

S(x− y, t− s) f (y,s)dyds (30)

3.4. Heat equation on an interval

3.4.1. Formulation of the problem

We consider the heat equation for x in an interval [a,b]: That means t > 0 we want

ut(x, t) = kuxx(x, t) for x ∈ (a,b)

13



and boundary conditions at x = a and x = b. In the case (D) of Dirichlet conditions at both endpoints this means that for
t > 0

u(a, t) = 0, u(b, t) = 0.

In the case (N) of Neumann conditions at both endpoints this means that for t > 0

ut(a, t) = 0, ut(b, t) = 0.

We can also have case (DN) where we have a Dirichlet condition at the left endpoint and a Neumann condition at the
right endpoint: For t > 0:

u(a, t) = 0, ut(b, t) = 0.

We could also have a case (ND) where the conditions are the other way around. We can also have Robin boundary conditions
u′(a)+α1u(a) = 0 or u′(b)−αu(b) = 0 with α1,α2 > 0.

In any of these cases we require that u(x, t) satisfies an initial condition at t = 0:

u(0, t) = u0(x) for x ∈ (a,b)

with a given function u0(x).

We say u(x, t) is a classical solution if the function u(x, t) is continuous for x∈ [a,b], t ≥ 0, and the functions ut(x, t), uxx(x, t)
are continuous for x ∈ (a,b), t > 0.

3.5. Inner product and symmetry

We consider the heat equation on an interval [a,b] with e.g. Dirichlet condition u = 0 for x = a and Neumann condition
ux = 0 for x = b (all other cases work in the same way).

We define the “inner product” of two functions u,v on the interval (a,b) as

〈u,v〉 :=
∫ b

a
u(x)v(x)dx

Assume that the functions u,w have two continuous derivatives on [a,b] and satisfy the boundary conditions

u(a) = 0 u′(b) = 0 (31)

v(a) = 0 v′(b) = 0 (32)

Let us write Au for−u′′. We claim that the operator A with these boundary conditions is “symmetric” in the following sense:

〈Au,v〉= 〈u,Av〉

This follows by using integration by parts twice:

−
∫ b

a
u′′(x)v(x)dx =−

[
u′(x)v(x)

]b
a︸ ︷︷ ︸

0

+
∫ b

a
u′(x)v′(x)dx =

[
u(x)v′(x)

]b
a︸ ︷︷ ︸

0

−
∫ b

a
u(x)v′′(x)dx

The terms at x = a,b vanish because of the boundary conditions (31), (32).
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3.6. Recipe for solution: “Separation of Variables”

We now consider the initial boundary value problem (IBVP) for the heat equation: Find a function u(x, t) such that

ut(x, t)−uxx(x, t) = 0 x ∈ (a,b), t > 0

u(a, t) = 0, u′(b, t) = 0 t > 0 (33)

with the initial condition
u(x,0) = u0(x) x ∈ (a,b)

for a given function u0(x). Note that with the operator Au :=−uxx we can write the PDE formally as

∂tu+Au = 0

with boundary condition (33) and the initial condition

u(·,0) = u0.

This is reminiscent of the ODE initial value problem (6), (7). Therefore we want to use a similar strategy to solve the
problem:

1. Find special solutions of the form
u(x, t) = v(x)g(t) (34)

where v(x) is not the zero function: Plugging this into the PDE gives

v(x)g′(t) = kv′′(x)g(t) (35)

where g satisfies the appropriate boundary conditions: E.g. in case (DN) we have

v(a) = 0, v′(b) = 0.

Assuming g(t) 6= 0 we can write (35) as

−kv′′(x) =−g′(t)
g(t)

v(x).

The left hand side does not depend on t. Since v(x) is not the zero function this can only work if −g′(t)
g(t)

is a constant

λ .

Therefore we have to solve an eigenvalue problem: Find λ and a function v(x) (not the zero function) such that (in
case (DN))

−v′′(x) = λv(x) x ∈ (a,b)

v(a) = 0, v′(b) = 0
(36)

Solving this eigenvalue problem gives real eigenvalues 0 ≤ λ1 ≤ λ2 ≤ λ3 ≤ ·· · with λ j → ∞ as j→ ∞, and eigen-
functions v j(x) which are orthogonal on each other:〈

v j,vk
〉
= 0 if j 6= k. (37)

For each eigenfunction v j(x) we have now a special solution of the PDE: Since −g′(t)
g(t)

= λ j we have g(t) = c je−λ jt

and our special solution is
c jv j(x)e−λ jt

for j = 1,2,3, . . . .
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2. Write the solution u(x, t) of the initial value problem as a linear combination of the special solutions: We need
to find coefficients c1,c2,c3, . . . such that

u(x, t) =
∞

∑
j=1

c jv j(x)e−λ jt (38)

We find the coefficients by setting t = 0: Then the initial condition gives

u0(x) =
∞

∑
j=1

c jv j(x) (39)

We now take the inner product of this equation with the function vk(x): Then the orthogonality (37) gives 〈u0,vk〉 =
ck 〈vk,vk〉 or

ck =
〈u0,vk〉
〈vk,vk〉

(40)

Summary of Recipe: We need to do the following steps:

• Find all eigenvalues λ j and eigenfunctions v j(x) of the eigenvalue problem (36).

• Find the coefficients ck by computing the integrals in (40).

• Then u(x, t) is given by the series (42).

We claim that this recipe always gives the solution of our initial value problem.

Example 1: We want to solve the heat equation ut = uxx for x ∈ [0,1]. We impose impose Dirichlet conditions at both
endpoints (case (D))

u(0, t) = 0, u(1, t) = 0

and the initial condition
u(x,0) = u0(x) = 1 x ∈ (0,1).

1. Solve the eigenvalue problem: Find λ ∈ R and function v(x) (not zero function) such that

−v′′(x) = λv(x), v(0) = 0, v(1) = 0.

For a given λ ≥ 0 the ODE v′′(x)−λv(x) = 0 has the following general solution:

If λ = 0 the general solution is
v(x) =C11+C2x

Now v(0) = 0 gives C1 = 0, and then v(1) = 0 gives v(1) = 0. Hence the only solution is v(x) = 0, and λ = 0 is not an
eigenvalue.

If λ > 0 the general solution is
v(x) =C1 sin(λ 1/2x)+C2 cos(λ 1/2x).

Now v(0) = 0 gives C2 = 0. Then v(1) = 0 gives C1 sin(λ 1/2) = 0. For a solution v(x) which is not the zero function we
need sin(λ 1/2) = 0. We know that sinx = 0 if and only if x = jπ for some integer j. Hence we need

λ
1/2 = jπ

λ = j2
π

2 j = 1,2,3, . . .

(recall that we want to find λ > 0). Therefore we have found the eigenvalues λ j and eigenfunctions v j(x):

λ j = j2
π

2, v j(x) = sin( jπx) j = 1,2,3, . . .
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2. Find the coefficients ck: We have to compute

ck =
〈u0,vk〉
〈vk,vk〉

for k = 1,2,3, . . . .

We first compute the denominator using
∫

sin2 xdx = 1
2 x− 1

4 sin(2x) and z = kπx:

〈vk,vk〉=
∫ 1

0
sin2(kπx)dx =

1
kπ

[1
2 z− 1

4 sin(2z)
]kπ

z=0 =
1
2
.

We then compute the numerator using cos(kπ) = (−1)k for integer k:

〈u0,vk〉=
∫ 1

0
sin(kπx)dx =

1
kπ

[−cos(kπx)]1x=0 =
1

kπ

(
1− (−1) j)

Hence we obtain

ck =

{
4

kπ
for k odd

0 for k even

Therefore the solution of the initial value problem is

u(x, t) = ∑
k=1,3,5,...

4
kπ

sin(kπx)e−k2π2t

Example 2: We want to solve the heat equation ut = uxx for x ∈ [0,1]. We impose Neumann conditions at both endpoints
(case (N))

u(0, t) = 0, u(1, t) = 0

and the initial condition
u(x,0) = u0(x) = x x ∈ (0,1).

1. Solve the eigenvalue problem: Find λ ∈ R and function v(x) (not zero function) such that

−v′′(x) = λv(x), v′(0) = 0, v′(1) = 0.

For a given λ ≥ 0 the ODE v′′(x)−λv(x) = 0 has the following general solution:

If λ = 0 the general solution is
v(x) =C11+C2x, v′(x) =C2

Now v′(0) = 0 gives C2 = 0, and then v′(1) = 0 is also satisfied. Hence we can obtain a solution (other than v = 0) as
v(x) = 1. Therefore λ0 = 0 is an eigenvalue, and the corresponding eigenfunction is v0(x) = 1.

If λ > 0 the general solution is

v(x) =C1 sin(λ 1/2x)+C2 cos(λ 1/2x), v′(x) =C1λ
1/2 cos(λ 1/2x)−C2λ

1/2 sin(λ 1/2x)

Now v′(0) = 0 gives C1 = 0. Then v′(1) = 0 gives −C2λ 1/2 sin(λ 1/2) = 0. For a solution v(x) which is not the zero function
we need sin(λ 1/2) = 0. We know that sinx = 0 if and only if x = jπ for some integer j. Hence we need

λ
1/2 = jπ

λ = j2
π

2 j = 1,2,3, . . .

(recall that we want to find λ > 0). Therefore we have found the eigenvalues λ j and eigenfunctions v j(x):

λ j = j2
π

2, v j(x) = sin( jπx) j = 1,2,3, . . .
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2. Find the coefficients ck: We have to compute

ck =
〈u0,vk〉
〈vk,vk〉

for k = 0,1,2, . . . .

For k = 0 we obtain

c0 =
〈u0,v0〉
〈v0,v0〉

=

∫ 1
0 xdx∫ 1
0 1dx

=
1
2
1
= 1

2 .

For k = 1,2,3, . . . we have for the denominator using
∫

cos2 xdx = 1
2 x+ 1

4 sin(2x) and z = kπx:

〈vk,vk〉=
∫ 1

0
cos2(kπx)dx =

1
kπ

[1
2 z+ 1

4 sin(2z)
]kπ

z=0 =
1
2
.

We then compute the numerator using the antiderivative
∫

cosxdx = cosx+ xsinx: Then the change of variables z = kπx
gives

〈u0,vk〉=
∫ 1

x=0
xcos(kπx)dx =

∫ kπ

z=0

z
kπ

cos(z)
dz
kπ

=
1

k2π2 [cosz+ zsinz]kπ

z=0 =
1

k2π2

(
(−1)k−1

)
=

{
0 for k even
−2

k2π2 for k odd

Hence we obtain

ck =


1
2 for k = 0
−4

k2π2 for k odd
0 otherwise

Therefore the solution of the initial value problem is

u(x, t) = 1
2 + ∑

k=1,3,5,...

−4
k2π2 cos(kπx)e−k2π2t

3.7. Convergence of the series?

So far we have a formal recipe:

• Find all eigenvalues λ j and eigenfunctions v j(x) of the eigenvalue problem (36).

• Find the coefficients ck by computing the integrals in (40).

• Then u(x, t) is given by the series (42).

Assume we are able to find all eigenvalues and eigenfunctions, and can compute all coefficients ck. Then the following
questions remain:

1. Does the series for u0(x)

u0(x) =
∞

∑
j=1

c jv j(x) (41)

converge? In which sense does it converge? Is the limit of the series really u0(x)?

2. For t > 0: does the series

u(x, t) =
∞

∑
j=1

c jv j(x)e−λ jt x ∈ (a,b), t > 0 (42)

converge? In which sense does it converge?

3. Does the function u(x, t) defined by the series (42) satisfy the heat equation? This seams reasonable, since by con-
struction each of the functions v j(x)e−λ jt are solutions of the heat equation. Therefore for a finite N the function
∑

N
j=1 c jv j(x)e−λ jt satisfies the heat equation. But for N→ ∞ one needs to prove this.

4. Does the function u(x, t) satisfy the initial condition? I.e., if we let t tend to zero, will we have

lim
t→0

u(x, t) = u0(x)

For a finite series ∑
N
j=1(· · ·) we can just let t→ 0 in each term. But for an infinite series this is more difficult.
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3.8. Review: Uniform convergence

We consider a sequence f j(x), j = 1,2,3, . . . of continuous functions for x ∈ [a,b]. We would like to know whether the limit
function

f (x) = lim
j→∞

f j(x) (43)

exists and is also a continuous function.

Example: Let f j(x) = tan−1( jx) on the interval [−1,1]. Then for each x ∈ [−1,1] the limit (43) exists:

lim
j→∞

tan( jx) =


−π

2 for x < 0
0 for x = 0
π

2 for x > 0

Obviously, the limit function f (x) is not continuous. Here the functions f j(x) converge “pointwise”, i.e., for each fixed x the
sequence f j(x) is convergent.

A stronger notion of convergence of functions is uniform convergence: We say the functions f j(x) converge uniformly to the
function f (x) on the interval [a,b] if

max
x∈[a,b]

∣∣ f j(x)− f (x)
∣∣→ 0 as j→ ∞

In this case the limit function must also be continuous:

Theorem 3.4. Assume that the functions f j(x) are continuous for x ∈ [a,b]. Assume that for each x ∈ [a,b] the limit

f (x) := lim
j→∞

f j(x)

exists, and that
max

x∈[a,b]

∣∣ f j(x)− f (x)
∣∣→ 0 as j→ ∞

Then the function f (x) is continuous.

Now we apply this theorem to the case of a series:

f (x) =
∞

∑
j=1

g j(x) (44)

Corollary 3.5. Assume that the functions g j(x) are continuous for x ∈ [a,b]. Let

α j := max
x∈[a,b]

∣∣g j(x)
∣∣

If
∞

∑
j=1

α j < ∞

then fn = ∑
n
j=1 g j converges uniformly to f , and the limit function f (x) is continuous on [a,b].

Proof. For each x ∈ [a,b] the limit (44) must exist since ∑
∞
j=1

∣∣g j(x)
∣∣ converges. We then have for any x ∈ [a,b]

| f (x)− fn(x)|=

∣∣∣∣∣ ∞

∑
j=n+1

g j(x)

∣∣∣∣∣≤ ∞

∑
j=n+1

∣∣g j(x)
∣∣≤ ∞

∑
j=n+1

α j

Since ∑
∞
j=1 α j converges the expression on the right hand side must converge to zero as n→ ∞. Therefore the sequence f j

satisfies the assumption of Theorem 3.4.
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3.9. Convergence for the examples

We want to see whether in the examples the series (39) for u0(x) and the series (38) for u(x, t) (t > 0) converge uniformly.

Example 1: For u0(x) = 1 we have obtained the series

u0(x) = ∑
k=1,3,5,...

4
kπ

sin(kπx)

One can prove that the series converges to 1 for each fixed x ∈ (0,1). For x = 0 we see that the series gives 0. Therefore the
series cannot converge uniformly (if it did, it would converge to a continuous function.

Note that we cannot expect to find a classical solution of the heat equation for example 1: A classical solution must be
continuous for x ∈ [a,b] and t ≥ 0. In this example we want u(x,0) = 1 for all x, and u(0, t) = 0 for all t. Therefore it is
impossible for the function u(x, t) to be continuous at (x, t) = (0,0).

For u(x, t) with t > 0 we have the series

u(x, t) = ∑
k=1,3,5,...

4
kπ

e−k2π2t sin(kπx)

Note that ∣∣∣∣ 4
kπ

e−k2π2t sin(kπx)
∣∣∣∣≤ 4

kπ
e−k2π2t =: αk

Note that αk decays exponentially fast if t > 0. Therefore

∞

∑
k=1

αk < ∞

and by Corollary 3.5 the series for u(x, t) converges uniformly. Now we consider ux(x, t): Taking the partial derivative with
respect to x of each term of the series gives the series

ũ(x, t) := ∑
k=1,3,5,...

4
kπ

e−k2π2tk cos(kπx), αk =
4

kπ
e−k2π2tk

Since ∑
∞
k=1 αk < ∞ the series converges uniformly, and we can also conclude that ux(x, t) = ũ(x, t). The same argument also

works for uxx, ut and in fact for any partial derivative. In particular we obtain that

ut(x, t)−uxx(x, t) = ∑
k=1,3,5,...

4
kπ

e−k2π2t sin(kπx)
[
−k2 + k2]= 0

Example 2: Here we obtained for u0(x) = x the series

u0(x) = 1
2 + ∑

k=1,3,5,...

−4
k2π2 cos(kπx)

Note that ∣∣∣∣ 4
k2π2 cos(kπx)

∣∣∣∣≤ 4
k2π2 =: βk

where ∑
∞
k=1 βk =

4
π2 ∑

∞
k=1

1
k2 < ∞. Hence the series for u0(x) converges uniformly.

For u(x, t) with t > 0 we have the series

u(x, t) = 1
2 + ∑

k=1,3,5,...

−4
k2π2 cos(kπx)e−k2π2t .
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Here ∣∣∣∣ −4
k2π2 cos(kπx)e−k2π2t cos(kπx)

∣∣∣∣≤ 4
k2π2 e−k2π2t =: αk

Note that αk decays exponentially fast for t > 0. Therefore we obtain as in Example 1 that the series for u(x, t) converges
uniformly. The same holds for all partial derivatives. As in Example 1 it follows that u(x, t) satisfies the heat equation.

But there is one difference: Note that αk depends on t, but for any t > 0 we have the bound

αk =
4

k2π2 e−k2π2t ≤ 4
k2π2 = βk

where ∑
∞
k=1 βk < ∞. Therefore one is allowed to perform the limit for t→ 0 term by term:

lim
t→0

u(x, t) =
∞

∑
k=0

lim
t→0

[
ckvk(x)e−λkt

]
=

∞

∑
k=0

ckvk(x) = u0(x).

Actually, one can see that this limit is uniform in x, so one obtains that the function u(x, t) is actually continuous for x ∈ [a,b]
and t ≥ 0. Therefore u(x, t) is a classical solution of the heat equation.

A. Appendix: Hilbert space, orthogonal systems and eigenvalue problems

A.1. Hilbert space

We consider a real vector space H with the following properties

1. There is an inner product 〈u,v〉 satisfying the following: For any u,v,w ∈ H, α,β ∈ R

〈αu+βv,w〉= α 〈u,v〉+β 〈v,w〉 , 〈u,v〉= 〈v,u〉 , 〈u,u〉> 0 for u 6= 0

We define the norm ‖u‖ := 〈u,u〉1/2.

2. With respect to this norm the space H is complete: every Cauchy sequence converges.

Such a space is called a Hilbert space.

Recall that we call a sequence u1,u2,u3, . . . of elements of H a Cauchy sequence if for any ε > 0 there exists N0 such that

∀M,N ≥ N0 : ‖uM−uN‖< ε.

Example 1: H = Rn, 〈u,v〉= ∑
n
j=1 u jv j

Example 2: H is the set of all sequences (u1,u2,u3, . . .) with ∑
∞
j=1 u2

j < ∞. Here 〈u,v〉= ∑
∞
j=1 u jv j

Example 3: H = L2(I), the space of all functions u on an interval I = (a,b) such that
∫ b

a u(x)2dx is bounded.

Remark: (i) One needs to use the Lebesgue integral for the proper definition. (ii) Functions u and v which differ only on a
set of measure zero satisfy ‖u− v‖= 0 and are considered identical.
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A.2. Orthogonal vectors

We say vectors v1,v2,v3, . . . form an orthogonal system if v j 6= 0 and〈
v j,vk

〉
= 0 for j 6= k

We can define the normalized vectors w j := v j/
∥∥v j
∥∥. These vectors form an orthonormal system, i.e.,

〈
w j,wk

〉
=

{
1 if j = k
0 if j 6= k

Assume that the vectors w1, . . . ,wN form an orthonormal system. We want to approximate a given vector u ∈ H by a vector
of the form

ũ =
N

∑
j=1

c jw j

It is easy to see that the error ‖ũ−u‖ becomes minimal if ũ−u is orthogonal on all the vectors w1, . . . ,wn, i.e.,〈
ũ−u,w j

〉
= 0 j = 1, . . . ,N (45)

As
〈
ũ,w j

〉
= c j this condition implies

c j =
〈
u,w j

〉
.

Note that we have because of (45)

‖u‖2 = 〈(u− ũ)+ ũ,(u− ũ)+ ũ〉= ‖u− ũ‖2 +‖ũ‖2

As ‖ũ‖2 = ∑
N
j=1 c2

j we have

‖u‖2 = ‖u− ũ‖2 +
N

∑
j=1

c2
j . (46)

Now we consider an infinite orthonormal system w1,w2,w3, . . .. For a given vector u ∈ H we define the coefficients c j :=〈
u,w j

〉
and

ũN :=
N

∑
j=1

c jw j.

By (46) we have
N

∑
j=1

c2
j ≤ ‖u‖

2 and therefore we obtain for N→ ∞

∞

∑
j=1

c2
j ≤ ‖u‖

2

This is called Bessel inequality. Since the series S := ∑
∞
j=1 c2

j converges, the sequence SN := ∑
N
j=1 c2

j must form a Cauchy
sequence. Then the sequence ũN must also form a Cauchy sequence since for M ≥ N

‖ũM− ũN‖2 =
M

∑
j=N+1

c2
j = SM−SN .

As the space H is complete the sequence ũN must have a limit ũ ∈ H. We then have

‖u‖2 = ‖u− ũ‖2 +‖ũ‖2 = ‖u− ũ‖2 +
∞

∑
j=1

c2
j .

If we have for all u ∈ H that
∞

∑
j=1

c2
j = ‖u‖

2
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(“Parseval identity”) we call the system w1,w2,w3, . . . a complete orthonormal system. In this case we have for all u ∈ H

‖u− ũN‖→ 0 as N→ ∞.

Example 1: For the space H = L2[0,1] of square integrable functions on the interval [0,1] the functions

w j(x) = 2−1/2 sin(π jx), j = 1,2,3, . . .

form a complete orthonormal system.

Example 2: For the space H = L2[0,1] of square integrable functions on the interval [0,1] the functions

w j(x) = 2−1/2 cos(π jx), j = 1,2,3, . . .

form an orthonormal system, but it is not complete: E.g. for u(x) = 1 we have ‖u‖= 1, but we have

ck = 〈u,wk〉=
∫ 1

0
cos(πkx)dx = 0

and therefore ũ(x) = 0, ∑
∞
j=1 c2

j = 0. The Bessel inequality is satisfied, but we do not have the Parseval identity. We cannot
represent all square integrable functions as a series ũ = ∑

∞
j=1 c jw j. Another way to see this is the following: All the functions

w j(x) have integral zero:
∫ 1

0 w j(x)dx = 0. Therefore we also must have
∫ 1

0 ũ(x)dx = 0.

Actually, one can show that one can obtain any function u ∈ L2[0,1] with integral zero as a series u = ∑
∞
j=1 c jw j. If we add

to our orthonormal system the function 1 the new system

1, 2−1/2 cos(πx), 2−1/2 cos(2πx), 2−1/2 cos(3πx), . . .

is a complete orthonormal system for all of L2[0,1].

A.3. Linear operators

Let T : H→ H be a linear mapping.

We call this mapping bounded if the set
S = {Tu | u ∈ H, ‖u‖ ≤ 1}

is bounded, i.e., C = supv∈S ‖v‖ is finite.

We call a mapping compact if the set S is compact, i.e., every sequence in S has a convergent subsequence.

We call a linear mapping T self-adjoint if

∀u,v ∈ H : 〈Tu,v〉= 〈u,T v〉

A.4. The eigenvalue problem

We say µ ∈ R is an eigenvalue of T if there exists a nonzero v ∈ H such that

T v = µv

In this case v is called the eigenvector for the eigenvalue µ .

Theorem A.1. Assume that H is a Hilbert space and T : H→ H is a linear compact self-adjoint operator. Assume that 0 is
not an eigenvalue of T . Then

1. There are infinitely many eigenvalues µ1,µ2,µ3, . . .. They are real and satisfy

|µ1| ≥ |µ2| ≥ |µ3 ≥|· · · , µk→ 0 as k→ ∞
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2. There are corresponding eigenvectors v j which are orthogonal on each other:〈
v j,vk

〉
= 0 for j 6= k

3. The eigenvectors form a complete orthogonal system: every u ∈ H can be written as an infinite linear combination of
eigenvectors: Let c j =

〈
u,v j

〉
/
〈
v j,v j

〉
, then

u =
∞

∑
j=1

c jv j

This means that the
∥∥∥u−∑

N
j=1 c jv j

∥∥∥→ 0 as N→ ∞.

I don’t give the proof of this theorem. But it is similar to the proof of Theorem 1.2: We first maximize |〈Tu,u〉| over all
u ∈ H with ‖u‖= 1 yielding a vector v1. One can again show that this function must be an eigenvector with eigenvalue µ1.
Then one considers the subspace V1 = {u ∈H | 〈u,v1〉= 0} of all vectors orthogonal to v1. Now we maximize |〈Tu,u〉| over
all u ∈V1 with ‖u‖= 1 yielding a vector v2. One obtains that this function must be an eigenvector with eigenvalue µ2 where
|µ2| ≤ |µ1|. In this way one obtains all eigenvectors v1,v2,v3, . . . .

A.5. Application to the ODE eigenvalue problem

Let us consider e.g. the Dirichlet case: Find λ and a function v such that

−v′′(x) = λv(x) x ∈ (a,b) (47)

v(a) = 0, v(b) = 0

We first consider the BVP with a given right hand side function f (x): Find u(x) such that

−u′′(x) = f (x) x ∈ (a,b)

u(a) = 0, u(b) = 0

In this case it is easy to see that we can obtain the unique solution by taking the antiderivative twice and adjust the constants
to satisfy the boundary conditions. We denote the operator which maps the function f to the function u by T : We have

u = T f

If u satisfies −u′′ = f and the boundary conditions, w satisfies −w′′ = g and the boundary conditions we have〈
−u′′,w

〉
=
〈
u,−w′′

〉
〈 f ,T g〉= 〈T f ,g〉

Therefore the operator T is self-adjoint. One can also show that the operator can be defined for any f ∈ L2 and gives a
function u = T f ∈ L2. Furthermore one can show that the operator T is compact. Therefore Theorem A.1 shows that the
operator T has infinitely many eigenvalues µ j with eigenfunctions v j such that

T v j = µ jv j

Hence µ jv j satisfies −µ jv′′j = v j. Therefore v j is an eigenfunction of our BVP (47) with λ j := µ
−1
j :

−v′′j = λ jv j

The eigenvalues µ j of the operator T satisfy lim j→∞ µ j = 0. Hence we obtain that the eigenvalues λ j satisfy lim j→∞ λ j = ∞.
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A.6. The general case with coefficient functions r(x), κ(x)

Recall from 3.1 that for the case of variable material properties along the bar we obtain the heat equation in the form

r(x)ut(x, t)−∂x [κ(x)ux(x, t)] = 0 x ∈ (a,b) (48)

with functions r(x) (specific heat) and κ(x) (heat conductivity) where r(x) > 0, κ(x) > 0 for x ∈ [a,b]. Let us consider the
case of the Dirichlet problem (the other cases work in the same way) with the boundary conditions

u(a, t) = 0, u(b, t) = 0 t > 0. (49)

We want to find a solution u(x, t) which satisfies an initial condition

u(x,0) = u0(x) x ∈ (a,b). (50)

Then the separation of variables method leads to the following eigenvalue problem:

Find λ and a function v(x) (not the zero function) such that

− d
dx

[
κ(x)v′(x)

]
= λ r(x)v(x) x ∈ (a,b)

v(a) = 0, v(b) = 0
(51)

We now define the inner product 〈u,v〉 in a different way:

〈u,v〉 :=
∫ b

a
u(x)v(x)r(x)dx.

If A denotes the operator

Au :=−r(x)−1 d
dx

[
κ(x)v′(x)

]
we claim that the operator is self-adjoint for functions u, v which are zero at x = a,b:

〈Au,v〉=−
∫ b

a

d
dx

[
κ(x)u′(x)

]
v(x)dx =−

[
κ(x)u′(x)v(x)

]b
a︸ ︷︷ ︸

0

+
∫ b

a
u′(x)κ(x)v′(x)dx

=
[
κ(x)u(x)v′(x)

]b
a︸ ︷︷ ︸

0

−
∫ b

a
u(x)

d
dx

[
κ(x)v′(x)

]
dx = 〈u,Av〉

Therefore we can use the standard recipe to solve the IBVP (48), (49), (50):

• Find all eigenvalues λ j and eigenfunctions v j(x) of the eigenvalue problem (51).

• Find the coefficients ck using

ck =
〈u0,vk〉
〈vk,vk〉

=

∫ b
a u0(x)vk(x)r(x)dx∫ b

a vk(x)2r(x)dx

• Then u(x, t) is given by the series

u(x, t) =
∞

∑
k=1

ckvk(x)e−λkt

Remark A.2. The same method also works for the PDE with an additional term q(x)u(x, t)

r(x)ut(x, t)−∂x [κ(x)ux(x, t)]+q(x)u(x, t) = 0 x ∈ (a,b)

where the function q satisfies q(x)≥ 0. In this case we have to solve the eigenvalue problem

− d
dx

[
κ(x)v′(x)

]
+q(x)u(x) = λ r(x)v(x) x ∈ (a,b)

v(a) = 0, v(b) = 0.
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