
Solving the heat equation, wave equation, Poisson equation using separation
of variables and eigenfunctions

1 Review: Interval in one space dimension

Our domain G = (0,L) is an interval of length L. The boundary ∂G = {0,L} are the two endpoints. We consider here as
an example the case (DD) of Dirichlet boundary conditions: Dirichlet conditions at x = 0 and x = L. For other boundary
conditions (NN), (DN), (ND) one can proceed similarly.

In one dimension the Laplace operator is just the second derivative with respect to x: ∆u(x, t) = uxx(x, t). We will consider
three different problems:

• heat equation ut −∆u = f with boundary conditions, initial condition for u

• wave equation utt −∆u = f with boundary conditions, initial conditions for u, ut

• Poisson equation −∆u = f with boundary conditions

Here we use constants k = 1 and c = 1 in the wave equation and heat equation for simplicity. But the case with general
constants k, c works in the same way.

1.1 Heat equation on an interval

We want to find a function u(x, t) for x ∈ G and t ≥ 0 such that

ut(x, t)−uxx(x, t) = f (x, t) x ∈ G, t > 0

u(x, t) = 0 x ∈ ∂G, t > 0

u(x,0) = u0(x), x ∈ G

with a given functions f (x, t) and u0(x). This describes e.g. heat conduction in a metal bar where u(x) is the temperature.

1.2 Wave equation on an interval

We want to find a function u(x, t) for x ∈ G and t ≥ 0 such that

ut(x, t)−uxx(x, t) = f (x, t) x ∈ G, t > 0

u(x, t) = 0 x ∈ ∂G, t > 0

u(x,0) = u0(x), x ∈ G

ut(x,0) = u1(x), x ∈ G

with a given functions f (x, t), u0(x), u1(x). This describes e.g. an elastic string where u(x) is the displacement.

1.3 Poisson equation on an interval

Now we consider a given function f (x) which only depends on x. We want to find a function u(x) for x ∈ G such that

−uxx(x) = f (x) x ∈ G

u(x) = 0 x ∈ ∂G

This describes the equilibrium problem for either the heat equation of the wave equation, i.e., temperature in a bar at equi-
librium, or displacement of a string at equilibrium.
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1.4 Eigenvalue problem for Laplace operator on an interval

For all three problems (heat equation, wave equation, Poisson equation) we first have to solve an eigenvalue problem: Find
functions v(x) and numbers λ such that

−v′′(x) = λv(x) x ∈ G

v(x) = 0, x ∈ ∂G

We will always have λ ≥ 0. In the case (NN) of pure Neumann conditions there is an eigenvalue λ = 0, in all other cases (as
in the case (DD) here) we have λ > 0.

For λ > 0 the general solution of the ODE −v′′(x)−λv(x) = 0 is given by

v(x) =C1 cos(λ 1/2t)+C2 sin(λ 1/2t)

The boundary condition at v(0) = 0 implies C1 = 0. Then the boundary condition v(L) = 0 gives λ 1/2L= jπ for j = 1,2,3, . . .
. Therefore we have found the eigenvalues λ j and eigenfunctions v j(x)

λ j =

(
jπ
L

)2

, v j(x) = sin
(

jπ
L

x
)

j = 1,2,3, . . .

The eigenfunctions have the following properties:

• orthogonality: With the inner product 〈 f ,g〉 :=
∫

G f (x)g(x)dx we have〈
v j,vk

〉
= 0 for j 6= k

• completeness: For any F(x) where
∫

G F(x)2dx exists we can define the Fourier coefficients

Fj :=

〈
F,v j

〉〈
v j,v j

〉
and then have that the Fourier series converges to F(x)

F(x) =
∞

∑
j=1

Fjv j(x)

in the sense that
∥∥∥F−∑

N
j=1 Fjv j

∥∥∥→ 0 as N→ ∞. Here ‖g‖ := 〈g,g〉1/2.

Note that for the function v j(x) = sin
(

jπ
L x
)

we have

〈
v j,v j

〉
=
∫ L

x=0
sin2

(
jπ
L

x
)

dx =
L
jπ

∫ jπ

z=0
sin2 zdz =

L
2

(1)

1.5 Solution of the Poisson problem on an interval

We can represent the solution u(x) in terms of its Fourier series

u(x) =
∞

∑
j=1

u jv j(x)

where we need to find the coefficients u j. Therefore we plug this into the ODE −u′′(x) = f (x)

−u′′(x) =
∞

∑
j=1

u j
(
−v′′j (x)

)
=

∞

∑
j=1

u jλ jv j(x)
!
= f (x)

and obtain that u jλ j are the Fourier coefficients of the function f (x), i.e.,

u j := λ
−1
j

〈
f ,v j

〉〈
v j,v j

〉
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1.6 Solution of the heat equation on an interval

We first consider the heat equation ut−uxx = 0 with f (x, t) = 0. The separation of variables method means that we first look
for special solutions of the form u(x, t) = g(t)v(x) and obtain

ut −uxx = g′(t)v(x)−g(t)v′′(x) = 0

−g′(t)
g(t)

=−v′′(x)
v(x)

= λ

−v′′(x) = λv(x), v(0) = 0, v(L) = 0 (2)

g′(t)+λg(t) = 0 (3)

Equation (2) means that v(x) is an eigenfunction v j(x) and λ is an eigenvalue λ j, j = 1,2, . . . . Equation (3) is an ODE with
general solution

g(t) =C je−λ jt .

Therefore the special solutions with separated variables are

C je−λ jtv j(x), j = 1,2,3, . . .

For the solution of our initial value problem ut −uxx = 0 with initial condition u(x,0) = u0(x) we want to write the solution
as a linear combination of these special solutions:

u(x, t) =
∞

∑
j=1

C je−λ jtv j(x)

This will satisfy the PDE, but we also need to satisfy the initial condition:

u(x,0) =
∞

∑
j=1

C jv j(x)
!
= u0(x)

Therefore C j must be the Fourier coefficients of the function u0(x):

C j :=

〈
u0,v j

〉〈
v j,v j

〉 (4)

For the general problem ut −uxx = f (x, t) with a source function f (x, t) we can then use Duhamel’s principle:

u(x, t) = uhom(x, t)+upart(x, t)

uhom(x, t) =
∞

∑
j=1

C je−λ jtv j(x), C j given by (4)

upart(x, t) =
∫ t

s=0
z(s)(x, t)ds

z(s)(x, t) =
∞

∑
j=1

Fj(s)e−λ j(t−s)v j(x), Fj(s) :=

〈
f (·,s),v j

〉〈
v j,v j

〉
1.7 Solution of the wave equation on an interval

We first consider the wave equation utt − uxx = 0 with f (x, t) = 0. The separation of variables method means that we first
look for special solutions of the form u(x, t) = g(t)v(x) and obtain

utt −uxx = g′′(t)v(x)−g(t)v′′(x) = 0

−g′′(t)
g(t)

=−v′′(x)
v(x)

= λ

−v′′(x) = λv(x), v(0) = 0, v(L) = 0 (5)

g′′(t)+λg(t) = 0 (6)
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Equation (5) means that v(x) is an eigenfunction v j(x) and λ is an eigenvalue λ j, j = 1,2, . . . . Equation (6) is for λ j > 0 an
ODE with general solution

g(t) = A j cos(λ 1/2
j t)+B j sin(λ 1/2

j t)

Therefore the special solutions with separated variables are[
A j cos(λ 1/2

j t)+B j sin(λ 1/2
j t)

]
v j(x), j = 1,2,3, . . .

For the solution of our initial value problem ut−uxx = 0 with initial conditions u(x,0) = u0(x) and ut(x,0) = u1(x) we want
to write the solution as a linear combination of these special solutions:

u(x, t) =
∞

∑
j=1

[
A j cos(λ 1/2

j t)+B j sin(λ 1/2
j t)

]
v j(x)

This will satisfy the PDE, but we also need to satisfy the initial conditions:

u(x,0) =
∞

∑
j=1

A jv j(x)
!
= u0(x)

ut(x,0) =
∞

∑
j=1

B jλ
1/2
j v j(x)

!
= u1(x)

Therefore A j must be the Fourier coefficients of the function u0(x), and λ
1/2
j B j must be the Fourier coefficients of the

function u1(x):

A j :=

〈
u0,v j

〉〈
v j,v j

〉 , B j := λ
−1/2
j

〈
u1,v j

〉〈
v j,v j

〉 (7)

For the general problem utt −uxx = f (x, t) with a source function f (x, t) we can then use Duhamel’s principle:

u(x, t) = uhom(x, t)+upart(x, t)

uhom(x, t) =
∞

∑
j=1

[
A j cos(λ 1/2

j t)+B j sin(λ 1/2
j t)

]
v j(x), A j,B j given by (7)

upart(x, t) =
∫ t

s=0
z(s)(x, t)ds

z(s)(x, t) =
∞

∑
j=1

Fj(s)sin
(

λ
1/2
j (t− s)

)
v j(x), Fj(s) := λ

−1/2
j

〈
f (·,s),v j

〉〈
v j,v j

〉
2 Rectangle in two space dimensions

We now consider the case of two space dimensions where the domain G is a rectangle G = (0,L1)× (0,L2). The boundary
∂G consists of the four sides of the rectangle. We consider here the case of Dirichlet boundary conditions on all four
sides of the rectangle. We could also consider any combination of Dirichlet and Neumann conditions for the four sides (e.g.,
Dirichlet conditions on one side and Neumann conditions on the other three sides) and proceed similarly.

In two dimensions the Laplace operator is ∆u(x,y, t) = uxx(x,y, t)+uyy(x,y, t). We will again consider three different prob-
lems:

• heat equation ut −∆u = f with boundary conditions, initial condition for u

• wave equation utt −∆u = f with boundary conditions, initial conditions for u, ut

• Poisson equation −∆u = f with boundary conditions

Note that the analogous problems in three dimensions on a box G = (0,L1)× (0,L2)× (0,L3) can be solved with the same
method.
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2.1 Heat equation on a rectangle

We want to find a function u(x,y, t) for (x,y) ∈ G and t ≥ 0 such that

ut(x,y, t)−∆u(x,y, t) = f (x, t) (x,y) ∈ G, t > 0 (8)

u(x,y, t) = 0 (x,y) ∈ ∂G, t > 0 (9)

u(x,y,0) = u0(x,y), (x,y) ∈ G (10)

with a given functions f (x, t) and u0(x). This describes e.g. heat conduction in a rectangular metal plate where u(x) is the
temperature.

2.2 Wave equation on a rectangle

We want to find a function u(x,y, t) for (x,y) ∈ G and t ≥ 0 such that

ut(x,y, t)−∆u(x,y, t) = f (x, t) (x,y) ∈ G, t > 0 (11)

u(x,y, t) = 0 (x,y) ∈ ∂G, t > 0 (12)

u(x,y,0) = u0(x.y), (x,y) ∈ G (13)

ut(x,y,0) = u1(x,y), (x,y) ∈ G (14)

with a given functions f (x, t), u0(x), u1(x). This describes e.g. a rectangular elastic membrane which is fixed at the boundary.
Here u(x) is the displacement of the membrane.

2.3 Poisson equation on a rectangle

Now we consider a given function f (x,y). We want to find a function u(x,y) for (x,y) ∈ G such that

−∆u(x,y) = f (x,y) (x,y) ∈ G (15)

u(x,y) = 0 (x,y) ∈ ∂G (16)

This describes the equilibrium problem for either the heat equation of the wave equation, i.e., temperature in a rectangular
plate at equilibrium, or displacement of a rectangular membrane at equilibrium.

2.4 Eigenvalue problem for Laplace operator on a rectangle

For all three problems (heat equation, wave equation, Poisson equation) we first have to solve an eigenvalue problem: Find
functions v(x,y) and numbers λ such that

−∆v(x,y) = λv(x,y) (x,y) ∈ G (17)

v(x,y) = 0, (x,y) ∈ ∂G (18)

We will always have λ ≥ 0. In the case Neumann conditions on the whole boundary there is an eigenvalue λ = 0, in all other
cases (as in the Dirichlet case here) we have λ > 0.

In order to solve the eigenvalue problem we use separation of variables and try to find eigenfunctions of the form

v(x,y) = p(x)q(y)

The function v(x,y) must satisfy the boundary condition (18), so we must have

p(0) = 0, p(L1) = 0, q(0) = 0, q(L2) = 0 (19)

5



We plug v(x,y) = p(x)q(y) into (17):

−vxx(x,y)− vyy(x,y) =−p′′(x)q(y)− p(x)q′′(y) = λ p(x)q(y)

− p′′(x)
p(x)

− q′′(x)
q(y)

= λ

Since − p′′(x)
p(x) depends only on x and −q′′(y)

q(y) depends only on y both terms must be constants:

− p′′(x)
p(x)

= µ, −q′′(x)
q(y)

= ν , µ +ν = λ (20)

Therefore we obtain two eigenvalue problems for p(x) and q(y):

1. Find p(x) and µ such that
−p′′(x) = µ p(x), p(0) = 0, p(L1) = 0 (21)

This gives the eigenvalues µ j =
(

jπ
L1

)2
and eigenfunctions p j(x) = sin

(
jπ
L1

x
)

for j = 1,2, . . . . Note that the eigen-
functions are orthogonal ∫ L1

0
p j(x)pk(x)dx = 0 for j 6= k

and complete on the interval [0,L1].

2. Find q(y) and ν such that
−q′′(y) = νq(y), q(0) = 0, q(L2) = 0 (22)

This gives the eigenvalues νk =
(

kπ

L1

)2
and eigenfunctions qk(y) = sin

(
kπ

L2
y
)

for k = 1,2, . . . . Note that the eigenfunc-
tions are orthogonal ∫ L2

0
q j(y)qk(y)dy = 0 for j 6= k

and complete on the interval [0,L2].

Therefore we have found eigenfunctions v jk(x,y) = p j(x)qk(y) and eigenvalues λ jk = µ j +νk for j = 1,2, . . . , k = 1,2, . . . .

We claim that the eigenfunctions have the following properties:

• orthogonality: With the inner product 〈 f ,g〉 :=
∫∫

G f (x,y)g(x,y)dxdy we have〈
v jk,v j′k′

〉
= 0 for ( j,k) 6= ( j′,k′)

This is easy to see: ∫ L1

x=0

∫ L2

y=0
v jk(x,y)v j′k′(x,y)dxdy =

∫ L1

x=0
p j(x)p j′(x)dx

∫ L2

y=0
qk(y)qk′(y)dy

If j 6= j′ the first term on the right hand side is zero. If k 6= k′ the second term on the right hand side is zero.

• completeness: For any F(x,y) where
∫∫

G F(x,y)2dxdy exists we can define the Fourier coefficients

Fjk :=

〈
F,v jk

〉〈
v jk,v jk

〉 = ∫ L1
x=0
∫ L2

y=0 F(x,y)p j(x)qk(y)dydx(∫ L1
x=0 p j(x)2dx

)(∫ L2
y=0 qk(y)2dy

)
and then have that the Fourier series converges to F(x,y)

F(x,y) =
∞

∑
j=1

∞

∑
k=1

Fjkv jk(x,y)

in the sense that
∥∥∥F−∑

N
j=1 ∑

N
k=1 Fjkv jk

∥∥∥→ 0 as N→ ∞. Here ‖g‖ := 〈g,g〉1/2.
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2.5 Solution of the Poisson problem on a rectangle

We can represent the solution u(x,y) in terms of its Fourier series

u(x,y) =
∞

∑
j=1

∞

∑
k=1

u jkv jk(x,y)

where we need to find the coefficients u jk. Therefore we plug this into the ODE −∆u(x,y) = f (x,y)

−∆u(x,y) =
∞

∑
j=1

∞

∑
k=1

u jk
(
−∆v jl(x,y)

)
=

∞

∑
j=1

∞

∑
k=1

u jkλ jkv jk(x,y)
!
= f (x,y)

and obtain that u jkλ jk are the Fourier coefficients of the function f (x), i.e.,

u jk := λ
−1
jk

〈
f ,v jk

〉〈
v jk,v jk

〉
2.6 Solution of the heat equation on a rectangle

We first consider the heat equation ut −∆u = 0 with f (x,y, t) = 0. The separation of variables method means that we first
look for special solutions of the form u(x,y, t) = g(t)v(x,y) and obtain

ut −∆u = g′(t)v(x,y)−g(t)∆v(x,y) = 0

−g′(t)
g(t)

=−∆v(x,y)
v(x,y)

= λ

−∆v′′(x,y) = λv(x,y) for (x,y) ∈ G, v(x,y) = 0 for (x,y) ∈ ∂G (23)

g′(t)+λg(t) = 0 (24)

Equation (23) means that v(x,y) is an eigenfunction v jk(x,y) and λ is an eigenvalue λ jk, j = 1,2, . . ., k = 1,2, . . . . Equation
(24) is an ODE with general solution

g(t) =C jke−λ jkt .

Therefore the special solutions with separated variables are

C jke−λ jktv jk(x,y), j = 1,2, . . . , k = 1,2, . . .

For the solution of our initial value problem ut −∆u = 0 with initial condition u(x,y,0) = u0(x,y) we want to write the
solution as a linear combination of these special solutions:

u(x,y, t) =
∞

∑
j=1

∞

∑
k=1

C jke−λ jktv jk(x,y)

This will satisfy the PDE, but we also need to satisfy the initial condition:

u(x,y,0) =
∞

∑
j=1

∞

∑
k=1

C jkv jk(x,y)
!
= u0(x,y)

Therefore C jk must be the Fourier coefficients of the function u0(x,y):

C jk :=

〈
u0,v jk

〉〈
v jk,v jk

〉 (25)
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For the general problem ut −∆u = f (x,y, t) with a source function f (x,y, t) we can then use Duhamel’s principle:

u(x,y, t) = uhom(x,y, t)+upart(x,y, t)

uhom(x,y, t) =
∞

∑
j=1

∞

∑
k=1

C jke−λ jktv jk(x,y), C jk given by (25)

upart(x,y, t) =
∫ t

s=0
z(s)(x,y, t)ds

z(s)(x,y, t) =
∞

∑
j=1

∞

∑
k=1

Fjk(s)e−λ j(t−s)v jk(x,y), Fjk(s) :=

〈
f (·, ·,s),v jk

〉〈
v jk,v jk

〉
2.7 Solution of the wave equation on a rectangle

We first consider the wave equation utt −∆u = 0 with f (x,y, t) = 0. The separation of variables method means that we first
look for special solutions of the form u(x,y, t) = g(t)v(x,y) and obtain

utt −∆u = g′′(t)v(x)−g(t)∆v(x,y) = 0

−g′′(t)
g(t)

=−∆v(x,y)
v(x,y)

= λ

−∆v′′(x,y) = λv(x,y) for (x,y) ∈ G, v(x,y) = 0 for (x,y) ∈ ∂G (26)

g′′(t)+λg(t) = 0 (27)

Equation (26) means that v(x,y) is an eigenfunction v jk(x,y) and λ is an eigenvalue λ j,k, j = 1,2, . . ., k = 1,2, . . . . Equation
(27) is for λ jk > 0 an ODE with general solution

g(t) = A jk cos(λ 1/2
jk t)+B jk sin(λ 1/2

jk t)

Therefore the special solutions with separated variables are[
A jk cos(λ 1/2

jk t)+B jk sin(λ 1/2
jk t)

]
v jk(x,y), j = 1,2, . . . , k = 1,2, . . .

For the solution of our initial value problem ut−∆u = 0 with initial conditions u(x,y,0) = u0(x,y) and ut(x,y,0) = u1(x,y, t)
we want to write the solution as a linear combination of these special solutions:

u(x,y, t) =
∞

∑
j=1

∞

∑
k=1

[
A jk cos(λ 1/2

jk t)+B jk sin(λ 1/2
jk t)

]
v jk(x,y) (28)

This will satisfy the PDE, but we also need to satisfy the initial conditions:

u(x,y,0) =
∞

∑
j=1

∞

∑
k=1

A jkv jk(x,y)
!
= u0(x,y)

ut(x,y,0) =
∞

∑
j=1

∞

∑
k=1

B jkλ
1/2
jk v jk(x,y)

!
= u1(x,y)

Therefore A jk must be the Fourier coefficients of the function u0(x,y), and λ
1/2
jk B jk must be the Fourier coefficients of the

function u1(x,y):

A jk :=

〈
u0,v jk

〉〈
v jk,v jk

〉 , B jk := λ
−1/2
jk

〈
u1,v jk

〉〈
v jk,v jk

〉 (29)
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For the general problem utt −∆u = f (x,y, t) with a source function f (x,y, t) we can then use Duhamel’s principle:

u(x,y, t) = uhom(x,y, t)+upart(x,y, t)

uhom(x,y, t) =
∞

∑
j=1

∞

∑
k=1

[
A jk cos(λ 1/2

jk t)+B jk sin(λ 1/2
jk t)

]
v jk(x), A jk,B jk given by (29)

upart(x,y, t) =
∫ t

s=0
z(s)(x,y, t)ds

z(s)(x,y, t) =
∞

∑
j=1

∞

∑
k=1

Fjk(s)sin
(

λ
1/2
jk (t− s)

)
v jk(x,y), Fjk(s) := λ

−1/2
jk

〈
f (·, ·,s),v jk

〉〈
v jk,v jkq

〉
2.8 Examples on a rectangle

We consider the rectangle G = [0,2]× [0,1] with Dirichlet conditions on all four sides.

2.8.1 Example for Poisson equation on a rectangle

We consider the Poisson problem (15), (16) with the function f (x,y) = 1.

We first have to solve the eigenvalue problem (17), (18) on a rectangle: Solving the eigenvalue problem (21) gives with
L1 = 2

µ j =

(
jπ
2

)2

, p j(x) = sin
(

jπ
2

x
)

j = 1,2, . . .

Solving the eigenvalue problem (22) gives with L2 = 1

νk = (kπ)2 , qk(y) = sin(kπy) k = 1,2, . . .

Therefore we obtain for j = 1,2, . . . and k = 1,2, . . . the eigenvaluesλ jk and eigenfunctions

λ jk =

(
j2

4
+ k2

)
π

2, v jk(x,y) = sin
(

jπ
2

x
)

sin(kπy) .

We have using (1) that 〈
v jk,v jk

〉
=

(∫ L1

x=0
p j(x)2dx

)(∫ L2

y=0
qk(y)2dy

)
=

L1

2
· L2

2
=

2
2
· 1

2
=

1
2
. (30)

Next we need to compute
〈

f ,v jk
〉
:

〈
f ,v jk

〉
=
〈
1,v jk

〉
=
∫ 2

x=0

∫ 1

y=0
1 · p j(x) ·qk(y)dydx =

(∫ 2

x=0
sin
(

jπ
2

x
)

dx
)(∫ 1

y=0
sin(kπy)dy

)
where ∫ L

x=0
sin
(

jπ
L

x
)

dx =
L
jπ

∫ jπ

z=0
sin(z)dz =

L
jπ

[−cos(z)] jπ
z=0 =

L
jπ

{
2 for j odd
0 for j even

yielding 〈
1,v jk

〉
=

{
4
jπ ·

2
kπ

if both j,k are odd

0 otherwise
(31)

Therefore we obtain u(x,y) = ∑
∞
j=1 ∑

∞
k=1 u jkv jk(x,y) where for both j,k odd we have

u jk := λ
−1
jk

〈
f ,v jk

〉〈
v jk,v jk

〉 = 1

π2
(

j2

4 + k2
) · 8

jkπ2

1
2

=
16

π4 jk
(

j2

4 + k
) ,
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otherwise u jk = 0. Therefore we can write the solution as

u(x,y) = ∑
j=1,3,5,...

∑
k=1,3,5,...

16

π4 jk
(

j2

4 + k2
) sin

(
jπ
2

x
)

sin(kπy) .

2.8.2 Example for heat equation on a rectangle

We consider the heat equation (8)–(10) with f (x,y, t) = 0 and u0(x,y) = 1. We already know the eigenvalues λ jk and
eigenfunctions v jk(x,y). We then have to find the Fourier coefficients of u0(x,y):

C jk :=

〈
u0,v jk

〉〈
v jk,v jk

〉 = 〈
1,v jk

〉〈
v jk,v jk

〉 (32)

From (30), (31) we get

C jk =

{
16

jkπ2 if both j,k are odd

0 otherwise
(33)

yielding

u(x,y, t) =
∞

∑
j=1

∞

∑
k=1

C jke−λ jktv jk(x,y) = ∑
j=1,3,5,...

∑
k=1,3,5,...

16
jkπ2 exp

(
−( j2

4 + k2)π2t
)

sin
(

jπ
2

x
)

sin(kπy) .

This may look complicated. But it shows that the different eigenmodes have different decay rates: For large frequencies j,k
we have large λ jk and fast decay. For a large time t the solution is dominated by the term with j = 1 and k = 1:

u(x,y, t)≈ 16
π2 exp(−5

4 π
2t)sin

(
π

2
x
)

sin(πy) .

2.8.3 Example for wave equation on a rectangle

We consider the wave equation (11)–(14) with f (x,y, t) = 0 , u0(x,y) = 0 and u1(x,y) = 1. We already know the eigenvalues
λ jk and eigenfunctions v jk(x,y). We then have A jk = 0 and we have to find the coefficients B jk: We can use (32), (33) and
obtain

B jk = λ
−1/2
jk

〈
u1,v jk

〉〈
v jk,v jk

〉 = λ
−1/2
jk

〈
1,v jk

〉〈
v jk,v jk

〉 = [( j2

4 + k2)π2
]−1/2

C jk =


16

(
j2

4 +k2)1/2 jkπ3
if both j,k are odd

0 otherwise

Then (28) gives

u(x,y, t) =
∞

∑
j=1

∞

∑
k=1

B jk sin(λ 1/2
jk t)v jk(x,y) = ∑

j=1,3,5,...
∑

k=1,3,5,...

16

( j2

4 + k2)1/2 jkπ3
sin
(
( j2

4 + k2)1/2
πt
)

sin
(

jπ
2

x
)

sin(kπy)

We see that the eigenmodes with higher spatial frequencies j,k oscillate with higher eigenfrequency λ
1/2
jk in time. Note that

unlike the case of the one-dimensional string the higher time eigenfrequencies λ
1/2
jk are no longer integer multiples of the

lowest eigenfrequency λ
1/2
11 =

(5
4

)1/2
π . Therefore the sound generated by the vibrating membrane is not a periodic function.
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