Solving the heat equation, wave equation, Poisson equation using separation
of variables and eigenfunctions

1 Review: Interval in one space dimension

Our domain G = (0,L) is an interval of length L. The boundary dG = {0,L} are the two endpoints. We consider here as
an example the case (DD) of Dirichlet boundary conditions: Dirichlet conditions at x = 0 and x = L. For other boundary
conditions (NN), (DN), (ND) one can proceed similarly.

In one dimension the Laplace operator is just the second derivative with respect to x: Au(x,t) = uy,(x,7). We will consider
three different problems:

e heat equation u;, — Au = f with boundary conditions, initial condition for u
e wave equation u,; — Au = f with boundary conditions, initial conditions for u, i,
e Poisson equation —Au = f with boundary conditions

Here we use constants k = 1 and ¢ = 1 in the wave equation and heat equation for simplicity. But the case with general
constants k, ¢ works in the same way.

1.1 Heat equation on an interval

We want to find a function u(x,#) for x € G and ¢t > 0 such that

ur (x,1) — e (x,2) = f(x,1) xeG, t>0
u(x,t)=0 x€dG, t>0
u(x,0) = up(x), xeG

with a given functions f(x,#) and up(x). This describes e.g. heat conduction in a metal bar where u(x) is the temperature.

1.2 Wave equation on an interval

We want to find a function u(x,) for x € G and ¢ > 0 such that

1) = f(x,1) xeqG, t>0

)
u(x,t) =0 x€dG, t>0
u(x,0) = up(x), xeG
u,(x,O):ul(X), xeG

with a given functions f(x,?), uo(x), uj (x). This describes e.g. an elastic string where u(x) is the displacement.

1.3 Poisson equation on an interval

Now we consider a given function f(x) which only depends on x. We want to find a function u(x) for x € G such that

—Upe(x) = f(x) xeG
u(x)=0 x€dG

This describes the equilibrium problem for either the heat equation of the wave equation, i.e., temperature in a bar at equi-
librium, or displacement of a string at equilibrium.



1.4 Eigenvalue problem for Laplace operator on an interval

For all three problems (heat equation, wave equation, Poisson equation) we first have to solve an eigenvalue problem: Find
functions v(x) and numbers A such that

—"(x) = Av(x) xeG
v(x) =0, x€JG
We will always have A > 0. In the case (NN) of pure Neumann conditions there is an eigenvalue A = 0, in all other cases (as
in the case (DD) here) we have A > 0.
For A > 0 the general solution of the ODE —v"(x) — Av(x) = 0 is given by
v(x) = Cycos(A%1) + Cysin(A /1)

The boundary condition at v(0) = 0 implies C; = 0. Then the boundary condition v(L) =0 gives A!/2L = jm for j=1,2,3,...
. Therefore we have found the eigenvalues A; and eigenfunctions v;(x)

. 2 .
A,:<JL”>, vj(x):sin<JL”x> i=1,23,...

The eigenfunctions have the following properties:

e orthogonality: With the inner product (f,g) := [ f(x)g(x)dx we have
(vj,k)y =0 for j#k
e completeness: For any F(x) where [ F(x)?dx exists we can define the Fourier coefficients

(F,v))

(vjvi)

FjIZ

and then have that the Fourier series converges to F(x)
F(x)=) Fv;(x)
=

in the sense that HF—ZJJLIFJ-VJH — 0 as N — oo. Here ||g]| := <g,g>1/2.

Note that for the function v;(x) = sin (%x) we have

L in L [im L
(vjv)) :/ sin? (’Lx) dr=— [ sin’zdz=7 (1)
X

=0 JT Jz=0

1.5 Solution of the Poisson problem on an interval

We can represent the solution u(x) in terms of its Fourier series

u(x) = iujvj<x>

where we need to find the coefficients u ;. Therefore we plug this into the ODE —u” (x) = f(x)
oo oo !
—u"(x) = Y uj (=i (x)) = ) ujdyvi(x) = f(x)
j=1 j=1
and obtain that u;A; are the Fourier coefficients of the function f(x), i.e.,

7L~71 <f’ v./>

T (vjvi)

uj =




1.6 Solution of the heat equation on an interval

We first consider the heat equation u; — u,, = 0 with f(x,7) = 0. The separation of variables method means that we first look
for special solutions of the form u(x,7) = g(t) (x) and obtain

U — e = g (t)v(x) —g(t)V'(x) =0
§0_ Vo

8(t) v(x)
—"(x) = Av(x), v(0)=0, v(L)=0 ()
g(t)+Ag(t) =0 3)
Equation (2) means that v(x) is an eigenfunction v;(x) and A is an eigenvalue A;, j = 1,2,... . Equation (3) is an ODE with

general solution
g(t)=Cje .
Therefore the special solutions with separated variables are
Cie Mlvi(x),  j=1,2,3,...

For the solution of our initial value problem u; — u,, = 0 with initial condition u(x,0) = uy(x) we want to write the solution
as a linear combination of these special solutions:

=Y Cje M'v)(x)
j=1
This will satisfy the PDE, but we also need to satisfy the initial condition:

ZCVJ —uo X)

Therefore C; must be the Fourier coefficients of the function ug(x):

(uo,v;)

“
(vjvy)

For the general problem u; — u,, = f(x,7) with a source function f(x,7) we can then use Duhamel’s principle:

CjIZ

u(x,t) = tnom (X,1) + Upart (X, 1)

om (X, ) Zc e Myi(x),  Cjgiven by (4)

e (5,1) = / [_Oq (3, 1)ds

- i(t=5) ) (x (s) = <f(-,s),vj>
=LA 09, F) =

1.7 Solution of the wave equation on an interval

We first consider the wave equation u,; — uy, = 0 with f(x,#) = 0. The separation of variables method means that we first
look for special solutions of the form u(x,) = g(¢)v(x) and obtain

s — 13y = 8" (1)v(x) — g(1)"(x) = 0
g _ Ve,

8(7) v(x)
—"(x) = Av(x), v(0)=0, v(L)=0 ®)
g'(t)+Ag(t) =0 (©)



Equation (5) means that v(x) is an eigenfunction v;(x) and A is an eigenvalue A;, j = 1,2,... . Equation (6) is for A; > 0 an

ODE with general solution

g(r) = Ajcos(A, 1) + B;sin(A] 1)

Therefore the special solutions with separated variables are

[Ajcos(ﬁ,jl/zt) +B,sin(x}/2t)} i),  j=123,...

For the solution of our initial value problem u; — u,, = 0 with initial conditions u(x,0) = ug(x) and u,(x,0) = u; (x) we want
to write the solution as a linear combination of these special solutions:

i [A cos(A;'"t) + B;sin(4; 12 )] vj(x)

This will satisfy the PDE, but we also need to satisfy the initial conditions:

ZAVJ —uo X)

0)= Y BA (0 L ()
j=1

Therefore A; must be the Fourier coefficients of the function uo(x), and A jl/ ’B ; must be the Fourier coefficients of the
function u; (x):

Aji= (o, v;) Bj:= l]fl/z 21:1’:]; (7
J 7]

For the general problem u;; — u,, = f(x,¢) with a source function f(x,7) we can then use Duhamel’s principle:

u(x,t) = tnom (X,1) + tpart (x,1)

Unom (X,1) = Z [A cos(4; 1/2 )+Bjsin()Lj1/2t)} v;(x), Aj,B; given by (7)

]:

—~ T

upart(xat) = Z(s) (x,t)ds

s=0

8

) (X,1) = 1F(s)sin (}L}/Q(z—s)> vi(x), Fi(s) := 7Lj—1/2<f<(‘;;’s‘)};‘>’j>

=

2 Rectangle in two space dimensions

We now consider the case of two space dimensions where the domain G is a rectangle G = (0,L;) x (0,L,). The boundary
dG consists of the four sides of the rectangle. We consider here the case of Dirichlet boundary conditions on all four
sides of the rectangle. We could also consider any combination of Dirichlet and Neumann conditions for the four sides (e.g.,
Dirichlet conditions on one side and Neumann conditions on the other three sides) and proceed similarly.

In two dimensions the Laplace operator is Au(x,y,t) = ux(x,y,1) + uyy(x,y,t). We will again consider three different prob-
lems:

e heat equation u, — Au = f with boundary conditions, initial condition for u
e wave equation u,;, — Au = f with boundary conditions, initial conditions for u, i,
e Poisson equation —Au = f with boundary conditions

Note that the analogous problems in three dimensions on a box G = (0,L;) x (0,L,) x (0,L3) can be solved with the same
method.



2.1 Heat equation on a rectangle

We want to find a function u(x,y,7) for (x,y) € G and ¢ > 0 such that

ut(xvyat)_Au(x’yvt):f(xat) (xvy)EGv t>0 (8)
u(x,y,t) =0 (x,y) €9G, t>0 )
u(x,y,0) =uo(x,y),  (x,y)€G (10)

with a given functions f(x,7) and uo(x). This describes e.g. heat conduction in a rectangular metal plate where u(x) is the
temperature.

2.2 Wave equation on a rectangle

We want to find a function u(x,y,) for (x,y) € G and ¢ > 0 such that

u (x,y,1) — Au(x,y,t) = f(x,1) (x,y)€G, t>0 (11)
u(x,y,t) =0 (x,y) €9G, t>0 (12)

u(x,y,0) = up(x.y), (x,y) €G (13)

ur (x,y,0) = up (x,y), (x,y) €G (14)

with a given functions f(x,7), uo(x), u; (x). This describes e.g. a rectangular elastic membrane which is fixed at the boundary.
Here u(x) is the displacement of the membrane.

2.3 Poisson equation on a rectangle

Now we consider a given function f(x,y). We want to find a function u(x,y) for (x,y) € G such that

—Au(x,y)=f(xy)  (xy)€G (15)
u(x,y)=0 (x,y) € G (16)

This describes the equilibrium problem for either the heat equation of the wave equation, i.e., temperature in a rectangular

plate at equilibrium, or displacement of a rectangular membrane at equilibrium.

2.4 Eigenvalue problem for Laplace operator on a rectangle

For all three problems (heat equation, wave equation, Poisson equation) we first have to solve an eigenvalue problem: Find
functions v(x,y) and numbers A such that

Moy =Ar(ny)  (0)) €G am
v(x,y) =0, (x,y) € G (18)

We will always have A > 0. In the case Neumann conditions on the whole boundary there is an eigenvalue A = 0, in all other
cases (as in the Dirichlet case here) we have A > 0.

In order to solve the eigenvalue problem we use separation of variables and try to find eigenfunctions of the form

v(x,y) = p(x)q(y)

The function v(x,y) must satisfy the boundary condition (18), so we must have

p(0)=0, p(L)=0, ¢(0)=0, ¢g(L)=0 19)



We plug v(x,y) = p(x)q(y) into (17):

—Vae(,y) = vy (x,3) = =p" (x)q(y) = p(x)q" (y) = Ap(x)q(y)
P'x) d'x) _,

px)  q(y)
Since —% depends only on x and —% depends only on y both terms must be constants:
/! !
) R | (20)
p(x) q(y)

Therefore we obtain two eigenvalue problems for p(x) and ¢(y):
1. Find p(x) and p such that
—p"(x)=up(x),  p(0)=0, p(L)=0 €2y

This gives the eigenvalues u; = (1

2
le> and eigenfunctions p;(x) = sm( ) for j =1,2,.... Note that the eigen-

functions are orthogonal
Ly
| pipar =0 for j £k
and complete on the interval [0,L;].

2. Find ¢(y) and v such that
4" () =vq(y),  9(0)=0, ¢(L)=0 (22)

2
This gives the eigenvalues v, = <’Ii—’|’> and eigenfunctions g (y) = sin < ) fork=1,2,.... Note that the eigenfunc-

tions are orthogonal
L,
/O q;(V)ak(y)dy =0 for j # k

and complete on the interval [0, L;].
Therefore we have found eigenfunctions v jx(x,y) = p;(x)qx(y) and eigenvalues Aj, = u;+vi for j=1,2,... ,k=1,2,....
We claim that the eigenfunctions have the following properties:

e orthogonality: With the inner product (f,g) := [/ f(x,y)g(x,y)dxdy we have

(vik,viw) =0 for (j,k) # (j',K)

This is easy to see:

Ly Ll Ly Ly
|2 [ vtepetendsay= [~ pitopyds [ ae)ae()dy
x=0Jy= x= y=

If j # j the first term on the right hand side is zero. If k # k’ the second term on the right hand side is zero.

e completeness: For any F(x,y) where [/ F (x,y)?dxdy exists we can define the Fourier coefficients

Fo o BV _ St 20 F (x,)p;(x)qi(y)dydx
T i (fo:]on(X)de) (ffio%(y)zdy)

and then have that the Fourier series converges to F(x,y)

:ZZ jkv]kxy
j=1k=1

in the sense that HF—ZIJYZIZszlekvij —0as N — oo. Here ||g|| := (g,8)"/>.



2.5 Solution of the Poisson problem on a rectangle

We can represent the solution u(x,y) in terms of its Fourier series

ZZZ ujev (%, )
j=1k=1

where we need to find the coefficients u j.. Therefore we plug this into the ODE —Au(x,y) = f(x,y)

—Au(x,y) :ZZ”J' M) = ¥ Y wiidje () = £(x,y)
oy

j=lk=1

and obtain that u ;A i are the Fourier coefficients of the function f(x), i.e.,

7L 1 <f7 /k>

e <Vﬂ<’ ka>

2.6 Solution of the heat equation on a rectangle

We first consider the heat equation u, — Au = 0 with f(x,y,) = 0. The separation of variables method means that we first
look for special solutions of the form u(x,y,7) = g(¢)v(x,y) and obtain

—Au=g'(t)v(x,y) —g(t)Av(x,y) =0
&) Av(ry)

g(t) (x,y)
—AV'(x,y) = Av(x,y) for (x,y) € v( ,y) =0 for (x,y) € dG (23)
g'(1)+ lg( )= (24)
Equation (23) means that v(x,y) is an eigenfunction v (x,y) and A is an eigenvalue A, j =1,2,...,k=1,2,... . Equation

(24) is an ODE with general solution
g(t) = Cjre ™.

Therefore the special solutions with separated variables are
Cive Mvi(x,y),  j=12,..., k=12,...

For the solution of our initial value problem u, — Au = 0 with initial condition u(x,y,0) = up(x,y) we want to write the
solution as a linear combination of these special solutions:

xy, ZZ ]ke jkvijy)

This will satisfy the PDE, but we also need to satisfy the initial condition:

Xy, ZZ /ijkxy _MO(X y)

Therefore Cj; must be the Fourier coefficients of the function ug(x,y):

<M0,ij> (25)
(Vi)

)

=




For the general problem u, — Au = f(x,y,t) with a source function f(x,y,7) we can then use Duhamel’s principle:

”(xay7t) = Uno ()C yat)+”part(x7)’7t)

Y Cie™ ity o (x,y), Cj. given by (25)
k=1

8

uhom(xa)’7t) =

J

> lMS

upart(xay7t) Z(s) (x,y,)ds

s=0

SR —Aj(t—s f 5 8),Vj
Z(s) (X, 0,1) = Z Zij(S)e At )ij(xay% Fj(s) == M

j=1k=1 <ij7"ﬂ<>

2.7 Solution of the wave equation on a rectangle

We first consider the wave equation u,; — Au = 0 with f(x,y,#) = 0. The separation of variables method means that we first
look for special solutions of the form u(x,y,t) = g(f)v(x,y) and obtain

uy — Au = g"(t)v(x) — g(t)Av(x,y) =0
S vy
( ) (X y)
~AV'(x,y) = Av(x,y) for (x,y) € ( ,y) =0 for (x,y) € G (26)
g'(t )+/1g( )= @27)
Equation (26) means that v(x,y) is an eigenfunction v, (x,y) and A is an eigenvalue A4, j =1,2,...,k=1,2,.... Equation

(27) is for Ajx > 0 an ODE with general solution
2 . 2
g(r) = Ajxcos(A1*1) + Bjsin(A}/*1)
Therefore the special solutions with separated variables are
Ajicos(A)1) +Bjksin(xj‘k/2z)} vielny),  j=12..., k=12,..

For the solution of our initial value problem u, — Au = 0 with initial conditions u(x,y,0) = uo(x,y) and u,(x,y,0) = u; (x,y,7)
we want to write the solution as a linear combination of these special solutions:

u(x,y,1) Z Z [ jkcos( 7ij/ )+Bjksm(kjk/ 1) vie(x,y) (28)

This will satisfy the PDE, but we also need to satisfy the initial conditions:

u(x,y,O) = Z ZAjkvjk(xvy) ; M()(X,y)
j=1k=1
(.00 = X 3 Byl vi(x3) = 0 (5)

~
Il
_
=
I

Therefore A j; must be the Fourier coefficients of the function ug (x,y), and /’L]lk/ ’B jx must be the Fourier coefficients of the
function u; (x,y):

(uo,vjx) 1/2 (ur,vie)
Aji=g =8, Bji= Ay s 29
B evie) P v @




For the general problem u,, — Au = f(x,y,t) with a source function f(x,y,7) we can then use Duhamel’s principle:

u(x,y,t) = Mhom(X,y,l) +“part(x7yat)

Unom (X, ,1) = Z Z [Ajk cos(ljlk/zt) +Bji sin(l;k/zt)] vi(x), Aji, B given by (29)

t
upart(x7y7t) = / Z(s) (x7y7t>ds

Z(s) (x,y,1) = i i Fji(s)sin <7Lj1k/2(z —s)) vik(x,y), Fir(s) == A};I/ZM

j=lk=1 <Vﬂ<’ ij11>

2.8 Examples on a rectangle

We consider the rectangle G = [0,2] x [0, 1] with Dirichlet conditions on all four sides.

2.8.1 Example for Poisson equation on a rectangle

We consider the Poisson problem (15), (16) with the function f(x,y) = 1.

We first have to solve the eigenvalue problem (17), (18) on a rectangle: Solving the eigenvalue problem (21) gives with

Li=2

. 2 .
JT . T .
auJ: (2> ) p](x)251n<2x> ]:1a2,

Solving the eigenvalue problem (22) gives with L, = 1
vi = (km)?, qr(y) = sin (kmy) k=1,2,...
Therefore we obtain for j =1,2,... and k = 1,2, ... the eigenvaluesA j; and eigenfunctions
9 :
Ak = <]4 +k2> %, vik(x,y) = sin <]27rx> sin (kmy) .

We have using (1) that

b Le L L, 21 1
(Vi Vi) = (/x_opj(X)de> </y_OQk(Y)2dy> =3 3 =5575

Next we need to compute (f, i ):

(fovie) = (Lvi) = /:O/yiol'pj(X) - qi(y)dydx = </;Osin (JZX> dX> </yiosin (kﬂy)dy>

L i L [im L ; L |2 forjodd
/ sin <]]irx> dx = —/ sin(z)dz = — [—cos(z)]/2) = — { oo
x=0

JT J=0 T 0 for jeven

where

yielding
jn " km

<1 > 2.2 ifboth j,k are odd
yVik) =
7 0 otherwise

Therefore we obtain u(x,y) = Y71 ¥ ujxvji(x,y) where for both j,k odd we have

ot M) 1 o 16
Wik = N T S I
(Vi vi)  n2 (fz —|—k2> 2

(30)

3D



otherwise u j; = 0. Therefore we can write the solution as

u(x,y) = Z Z (16+kz> sin (jzﬂ)c) sin (kmy).

j=135,.k=135.. % jk 2

2.8.2 Example for heat equation on a rectangle

We consider the heat equation (8)—(10) with f(x,y,r) = 0 and ug(x,y) = 1. We already know the eigenvalues Aj; and
eigenfunctions v, (x,y). We then have to find the Fourier coefficients of ug(x,y):

Cjk - <u0,ij> _ <1,ij> (32)

Wik vie) (Vi Vik)
From (30), (31) we get

16 if both j,k are odd
Ci— {]knz i both (33

0 otherwise
yielding
0 oo At B 16 —j2+k2 2 s jT Lk
u(x,y,1) ;; ke Fv(x,y) = Z jk?exp (4 )77t ) sin X sin (kmy).

j=1,3,5,...k=1,35,...

This may look complicated. But it shows that the different eigenmodes have different decay rates: For large frequencies j, k
we have large A and fast decay. For a large time ¢ the solution is dominated by the term with j =1 and k = 1:

16 T
u(x,y,1) &~ — exp(—~7°1)sin (Ex) sin (7y).

2.8.3 Example for wave equation on a rectangle

We consider the wave equation (11)—(14) with f(x,y,#) =0, up(x,y) = 0 and u; (x,y) = 1. We already know the eigenvalues
A ik and eigenfunctions v j (x,y). We then have A jk = 0 and we have to find the coefficients B j;: We can use (32), (33) and
obtain

16 . .
B v B 1,v; . ) ———— if both j, k are odd
By — )ijl/zM _ lﬂ(mﬂ _ [(é +k2)7r2] Co = 4 (i
Viks ij> <v-’k’ ij> 0 otherwise
Then (28) gives
u(x,y,1) i i B sin(4 k ’t Wik(x,y) = Z 16 sin ((é —|—k2)1/27£t) sin (ﬂrx> sin (k7y)
j=lk=1 ’ J=13,5,. k=135, ( +k2)1/2]k7r3 2

We see that the eigenmodes with higher spatial frequencies j, k oscillate with higher eigenfrequency A jlk/ ? in time. Note that
unlike the case of the one-dimensional string the higher time eigenfrequencies ljlk/ * are no longer integer multiples of the

lowest eigenfrequency A, : / 2 (Z) 1/2 7. Therefore the sound generated by the vibrating membrane is not a periodic function.
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