Solving an initial value problem for an ODE with the Laplace transform

Contents

Initial value problem:

Find the function y(t) which satisfies the differential equation

y'' + 2y' + y = g(t)

with the initial conditions

y(0) = 2, y'(0) = -3

and the right hand side function g(t) given by

g(t) = exp(3*t) for t<2

g(t) = 0 for t>=2

syms s t Y                          %  define the symbolic variables

Find the Laplace transform of the right hand side function

If the right hand side function g(t) is defined as

g(t) = g1(t) for t<t0 g(t) = g2(t) for t>=t0

rewrite it as

g(t) = g1(t) + heaviside(t-t0)*(g2(t)-g1(t))

In our example we have t0=2, g1(t) = exp(3*t) and g2(t) = 0:

g = exp(3*t) - heaviside(t-2)*exp(3*t)
ezplot(g,[0,10]); axis tight

G = laplace(g,t,s)                 %  find the Laplace transform of g(t)
g =
exp(3*t) - heaviside(t - 2)*exp(3*t)
G =
1/(s - 3) - (exp(-2*s)*exp(6))/(s - 3)

Apply the Laplace transform to the differential equation and solve for Y

Let Y1, Y2 denote the Laplace transforms of y', y'':

Y1 = s*Y - 2;                      %  use initial condition  y(0) = 2
Y2 = s*Y1 + 3;                     %  use initial condition y'(0) = -3

Sol = solve(Y2 + 2*Y1 + Y - G, Y)  %  set lhs - rhs to zero and solve for Y
sol = ilaplace(Sol,s,t)            %  apply inverse Laplace transform to get solution y(t)

ezplot(sol,[0,10])
title('solution y(t)')
Sol =
(2*s + 1/(s - 3) - (exp(-2*s)*exp(6))/(s - 3) + 1)/(s^2 + 2*s + 1)
sol =
(31*exp(-t))/16 + exp(3*t)/16 - (5*t*exp(-t))/4 + heaviside(t - 2)*exp(6)*(exp(2 - t)/16 - exp(3*t - 6)/16 + (exp(2 - t)*(t - 2))/4)