

Review of Taylor's theorem

1 Introduction

NOTATION:

- assignment: $x := y$ indicates that x is defined to be y . E.g., we write $x := x + 1$ to indicate that we increase the value of x by 1.
- $x = y$ means that the values x, y (which we defined earlier) are equal
- in most programming languages** (including **Matlab**):

assignment $x := y$ is written as **x=y**, this means that the variable x gets a new value.

expression $x = y$ is written as **x==y**, this expression evaluates to **true** or **false** (this can be used in an **if** statement)

Matlab command line:

```
>> x=5;      % define x to be 5
>> x==x+1    % returns false, in Matlab shown as 0 with type logical
ans =
    logical
    0
>> x=x+1    % increase x by 1
x =
    6
```

- $x \stackrel{!}{=} y$ means that we impose a **new condition which we want to hold**. We will then find parameters for which this condition holds.

Example: find the extreme points of the function $f(x) = x^3 - 3x$

We first find the derivative $f'(x) = 3x^2 - 3$. At an extreme point we want to have

$$f'(x) \stackrel{!}{=} 0 \quad (\text{necessary condition for extreme point})$$
$$3x^2 - 3 = 0 \iff x^2 = 1 \iff x = 1 \text{ OR } x = -1$$

For numerical computations we want to approximate a function value $y = f(x)$ by a value \tilde{y} which we can compute in finitely many operations on our machine.

A key tool for approximation is the **Taylor polynomial**. Most of the approximation techniques in this course are based on Taylor approximation.

Therefore we need to review the key ideas of Taylor approximation:

- approximate** $y = f(x)$:
pick x_0 , polynomial degree n
find the **Taylor polynomial** $p_n(x)$
- approximation error** $y - \tilde{y}$:
we have $y = \tilde{y} + R_{n+1}(x)$ and a formula for the **remainder term** $R_{n+1}(x)$

This will be on the first assignment and on the first exam.

2 Taylor polynomial $p_n(x)$

We want to approximate the function value $f(x)$. We only know the values $f(x_0), f'(x_0), f''(x_0), \dots$ at a nearby point x_0 .

An approximation for $f(x)$ is given by the **Taylor polynomial**

$$p_n(x) = f(x_0) + f'(x_0)(x - x_0) + \dots + f^{(n)}(x_0) \frac{(x - x_0)^n}{n!} \quad (1)$$

Note: We need to choose x_0 such that

- x_0 is close to x
- we know the values $f(x_0), f'(x_0), f''(x_0), \dots$

Example 1

Approximate $y = \frac{1}{2.02}$ using a Taylor polynomial $p_3(x)$.

1. Figure out what f, x, x_0, n are:

Here the function is $f(x) = x^{-1}$, we want to evaluate this at $x = 2.02$.

We need to pick x_0 close to x where we can easily find $f(x_0), \dots, f^{(n)}(x_0)$: we use $x_0 = 2$

Here we are told to use $n = 3$. Often we need to figure out n so that the approximation error is sufficiently small, see Example 2 below.

2. Find the derivatives $f', \dots, f^{(n)}$: $f'(x) = -x^{-2}, f''(x) = 2x^{-3}, f'''(x) = -6x^{-4}$

3. Evaluate $f, f', \dots, f^{(n)}$ at x_0 : $f(x_0) = \frac{1}{2}, f'(x_0) = -\frac{1}{4}, f''(x_0) = \frac{2}{8} = \frac{1}{4}, f'''(x_0) = -\frac{6}{16} = -\frac{3}{8}$

4. Write down Taylor polynomial $p_n(x)$ as an expression of x :

$$p_n(x) = f(x_0) + f'(x_0)(x - x_0) + \dots + f^{(n)}(x_0) \frac{(x - x_0)^n}{n!} = \frac{1}{2} - \frac{1}{4}(x - 2) + \frac{1}{8}(x - 2)^2 - \frac{1}{16}(x - 2)^3$$

5. Plug in the given value of x : here $x = 2.02$ and we obtain

$$\tilde{y} = p_n(x_0) = \frac{1}{2} - \frac{1}{4}0.02 + \frac{1}{8}0.02^2 - \frac{1}{16}0.02^3 = \underbrace{0.5 - 0.005}_{0.495} + \underbrace{0.00005 - 0.0000005}_{0.0000495} = 0.4950495$$

Important: do these five steps separately. Trying to do everything at once usually leads to mistakes.

Homework problem 1(a): Find $p_5(x)$ as a function of x by hand. Then plug in $x = 2.02$ and simplify. You can use Matlab to evaluate the resulting expression.

3 Remainder term R_{n+1}

Taylors theorem gives a formula **remainder term** $R_{n+1} = f(x) - p_n(x)$.

Theorem 1. Assume that f has continuous derivatives up to order $n+1$ between x and x_0 . Then

$$f(x) = p_n(x) + R_{n+1}$$

with the Taylor polynomial(1) and the **remainder term**

$$R_{n+1} = f^{(n+1)}(t) \frac{(x - x_0)^{n+1}}{(n+1)!}$$

(2)

where t is between x and x_0

This shows that

$$|f(x) - p_n(x)| \leq C |x - x_0|^{n+1}$$

I.e., the error decreases quickly as x gets closer to x_0 .

Example 1 (continued)

Use the remainder term to find an upper bound for the error $|y - \tilde{y}| = |f(x) - p_3(x)| \leq \dots$

Step 6: Find the remainder term R_{n+1} containing the unknown value t The fourth derivative is $f^{(4)}(x) = 24x^{-5}$. We have

$$f(x) - p_3(x) = R_4 = f^{(4)}(t) \frac{(x-x_0)^4}{4!} = 24t^{-5} \times \frac{0.02^4}{24} = t^{-5} \times 0.02^4$$

Step 7: Use that t is between x and x_0 to find an upper bound $|R_{n+1}| \leq \dots$ Here t is between $x = 2.02$ and $x_0 = 2$. Since the function t^{-5} is decreasing on the interval $[2, 2.02]$ and we get the largest value at the left endpoint 2:

$$|t^{-5}| \leq 2^{-5}$$

$$|y - \tilde{y}| \leq |t^{-5} \times 0.02^4| \leq 2^{-5} \times 0.02^4 = \frac{1}{2} \times 0.01^4 = \frac{1}{2} \times 10^{-8} = 5 \times 10^{-9}$$

Note that the actual error is

$$|y - \tilde{y}| = \left| \frac{1}{2.02} - 0.4950495 \right| \approx 4.95 \cdot 10^{-9}$$

This is indeed \leq our upper bound, but very close to it.

Homework problem 1(b): Find an upper bound $|f(x) - p_5(x)| \leq \dots$ by hand.

Find the actual error $|f(x) - p_5(x)|$ using Matlab. Compare this with the upper bound.

Example 2

We want to compute $y = \sqrt{9.1}$. We have a simple calculator which can only add, subtract, multiply and divide. How can we use the calculator to compute \tilde{y} with $|\tilde{y} - y| \leq 10^{-6}$?

Solution

Here $f(x) = \sqrt{x}$ and $x = 9.1$. We first try $n = 2$ and check if our error bound is small enough.

Step 1: Choose x_0 . Here we should use $x_0 = 9$ since it is close to $x = 9.1$ and we can evaluate $f(x_0), f'(x_0), f''(x_0), \dots$

Step 2: Find the derivatives f', f'', f''', \dots Here $f(x) = x^{1/2}$, so $f'(x) = \frac{1}{2}x^{-1/2}$, $f''(x) = -\frac{1}{4}x^{-3/2}$, $f'''(x) = \frac{3}{8}x^{-5/2}$, $f^{(4)}(x) = -\frac{15}{16}x^{-7/2}$ etc.

Step 3: Evaluate $f(x_0), f'(x_0), f''(x_0), f'''(x_0), \dots$ Here $x_0 = 9$, so we obtain

$$f(x_0) = 9^{1/2} = 3, \quad f'(x_0) = \frac{1}{2} \cdot 9^{-1/2} = \frac{1}{2} \cdot 3^{-1} = \frac{1}{6}, \quad f''(x_0) = -\frac{1}{4} \cdot 9^{-3/2} = -\frac{1}{4} \cdot 3^{-3} = -\frac{1}{108}$$

Step 4: Write down the Taylor polynomial $p_2(x)$ in terms of x :

$$p_2(x) = f(x_0) + f'(x_0)(x - x_0) + f''(x_0) \frac{1}{2}(x - x_0)^2 = 3 + \frac{1}{6} \cdot (x - 9) + \frac{-1}{108} \cdot \frac{1}{2} \cdot (x - 9)^2$$

Step 5: Plug in $x = 9.1$:

$$\tilde{y} = p_2(9.1) = 3 + \frac{1}{6} \cdot 0.1 + \frac{-1}{108} \cdot \frac{1}{2} \cdot 0.1^2 = 3 + \frac{1}{60} + \frac{-1}{21600} \approx 3.01662037037$$

Step 6: Find the remainder term R_{n+1} containing the unknown value t : Here $n = 2$ and we have

$$R_3 = f'''(t) \cdot \frac{1}{(n+1)!} \cdot (x - x_0)^{n+1} = \frac{3}{8} \cdot t^{-5/2} \cdot \frac{1}{3!} \cdot (9.1 - 9)^3 = \frac{3}{8} \cdot \frac{1}{6} \cdot \frac{1}{10^3} \cdot t^{-5/2}$$

Step 7: Use that t is between x and x_0 to find an upper bound $|R_{n+1}| \leq \dots$

Here t is between $x = 9.1$ and $x_0 = 9$. Since $t^{-5/2}$ is a decreasing function we get $|t^{-5/2}| \leq 9^{-5/2} = (9^{1/2})^{-5}$ and

$$|R_3| \leq \frac{3}{8} \cdot \frac{1}{6} \cdot \frac{1}{10^3} \cdot 3^{-5} \approx 2.572 \cdot 10^{-7}$$

Therefore we have $|\tilde{y} - y| \leq 2.573 \cdot 10^{-7} \leq 10^{-6}$. Therefore $n = 2$ is sufficient.

If we want to achieve $|\tilde{y} - y| \leq 10^{-7}$ we would try $n = 3$.