Assignment #1, due Thursday, February 5 at 10pm

Use Matlab for all computations. Use format long g in Matlab to see all computed digits.

Only print out numerical results which are asked for in the problem (put a semicolon at the end of your
commands).

You MUST use a “Live Script” mlx file. Use text fields (not code comments) to answer all questions. Use
clearvars as the first command in your script file.

DO NOT use symbolic Matlab commands like sym, syms, taylor, subs.

Please read “How to hand in homeworks” on the ELMS page.

1. (i) Find the Taylor polynomial p,(z) = f(z¢) + --- + f™(20)(z — z¢)"/n! by hand. Then evaluate
pn(z) using Matlab.
(ii) Find an upper bound |f(z) — p,(z)| < --- using the remainder term. Use Matlab to evaluate the
upper bound and f(z) — p,(z).

(a) y=2.02"' withzg=2,n=5
(b) y =co0s0.2 with 20 =0, n =5
(c) y =In(1.03) with zy =1, n =2

2. We want to approximate z = y/a for a = 4.2.

(a) Method 1: Use the Taylor approximation y = ps(x) and zy = 4. Find an error bound |y — z| <

(b) Method 2: Use the “Babylonian algorithm:
We start with an initial guess y. Then z = y/a is between y and a/y, and we use the midpoint

1 a
Ynew ::i y+_
Yy

Explain why we have the error bound |y, — 2| < F with £ = % ‘y — %’

as the new guess. Then we repeat this.

Write Matlab code which starts with the initial guess y = 2 and prints prints after each iteration
Ynews F, B/ Egld where F,)q is the error bound from the previous iteration, using
fprintf(’'ynew=%-17.16g, E=%.3e, ratio=%g\n’,ynew,E,E/Eold"2)

Do not print anything else.

Iterate until £ < 107 What do the ratios E/E?, tell us?

3. We use single precision. For the following examples (a), (b), (c¢) do the following:

. /
(i) Find an expression for the condition number |c¢s(z) = ARG using pencil and paper. Eval-

/(=)

uate cs(z) for the given value of z in Matlab and find the unavoidable error ||cf(x)| ey + € | Here

ey ~ 1077 is the machine accuracy.

(ii) Evaluate the formula for y in Matlab using single precision, yielding y. You have to use
single(---) for ALL input values.

Then evaluate the formula in double precision, yielding yd (see example on ELMS page).

Then compute the actual relative error of y with relerr=(double(y)-yd)/yd .

Compare this relative error with the unavoidable error. Was this computation numerically stable?

(a) For x = 10 compute y = /16 — x — 4.
(b) For z =10~* compute y = In(1 — z).
(c) For z =1.2-107* compute y = sin(1/z).

