

Practice Problems for Exam 2

1. Consider the function $f(x) = \sin(\frac{\pi}{2}x)$

- (a) Find the interpolating polynomial $p(x)$ for the nodes $x_1 = 0, x_2 = 1, x_3 = 2$.
- (b) Use the error formula to give an upper bound for $|f(x) - p(x)|$ with $x \in [-\frac{1}{2}, \frac{5}{2}]$.
- (c) For the points x_1, x_2, x_3 find the best least squares fit with a function of the form $g(x) = c_1 + c_2x$.

2. Consider the nonlinear system

$$\begin{aligned}x_1 + x_1x_2 + x_2 &= 2 \\x_1 - x_2 - x_1x_2^2 &= 0\end{aligned}$$

Perform one step of the Newton method starting with $(1, 1)$.

3. Consider the initial value problem

$$y'' + y' + y = t, \quad y(1) = 1, \quad y'(1) = 2$$

- (a) Perform one step of the *Euler method* with $h = 1$ and give the resulting approximation for $y(2)$.
- (b) Perform one step of the *improved Euler method* with $h = 1$ and give the resulting approximation for $y(2)$.
- (c) Perform one step of the *backward Euler method* with $h = 1$ and give the resulting approximation for $y(2)$.
- (d) Write a Matlab function `z=IVP(a,b)` using `ode45` which solves the initial value problem with $y(1) = a, y'(1) = b$ and returns an approximation z for $y(2)$.