
Practice problems and solutions for Exam 2

1. We are given the following information about f(x):

f(0) = 2, f(1) = 1, f(3) = 0, f(4) = 1

(a) Write down the divided difference table. Find interpolating polynomial in Newton form (i) for the nodes in the
order 0, 1, 3, 4, (ii) for the nodes in the order 4, 3, 1, 0.

Divided difference table: x1 = 0, x2 = 1, x3 = 3, x4 = 4

f [x1] = 2 f [x1, x2] = −1 f [x1, x2, x3] = 1
6 f [x1, x2, x3, x4] = 1

12
f [x2] = 1 f [x2, x3] = − 1

2 f [x2, x3, x4] = 1
2

f [x3] = 0 f [x3, x4] = 1
f [x4] = 1

p(x) = f [x1] + f [x1, x2](x− x1) + f [x1, x2, x3](x− x1)(x− x2) + f [x1, x2, x3, x4](x− x1)(x− x2)(x− x3)

= 2 + (−1) · (x− 0) + 1
6 (x− 0)(x− 1) + 1

12 · (x− 0)(x− 1)(x− 3)

p(x) = f [x4] + f [x3, x4](x− x4) + f [x2, x3, x4](x− x3)(x− x4) + f [x1, x2, x3, x4](x− x2)(x− x3)(x− x4)

= 1 + 1 · (x− 4) + 1
2 (x− 4)(x− 3) + 1

12 · (x− 4)(x− 3)(x− 1)

(b) Assume we know that the 4th derivative satisfies
∣∣f (4)(x)

∣∣ ≤ 10 for x ∈ [0, 4]. Find an upper bound for |f(2)− p(2)|.
Let x̃ = 2. The error formula states that there exists t ∈ (0, 4) such that

|f(x̃)− p(x̃)| =
∣∣f (4)(t)∣∣

4!
|(x̃− x1)(x̃− x2)(x̃− x3)(x̃− x4)|

≤ 10

24
· 2 · 1 · 1 · 2 =

5

3

2. Consider the (x, y) data points (−1, 2), (1, 1), (2, 0). We want to fit the data with a function g(x) = c1 + c2x
2

(a) Find the best least squares fit by hand.

Here y =

 2
1
0

. With φ1(x) = 1 and φ2(x) = x2 we have A =

 1 1
1 1
1 4

. The normal equations are A>Ac = A>y:

[
3 6
6 18

] [
c1
c2

]
=

[
3
3

]
which gives c1 = 2, c2 = − 1

2 .

(b) Write a Matlab program which uses qr to solve this problem.

x = [ -1;1;2]; y=[2;2;0];

A = [x.^0,x.^2];

[Q,R] = qr(A,0);

d = Q’*y;

c = R\d;

3. We want to find c ∈ R2 such that ‖Ac− y‖2 is minimal. Here y = [1, 2, 3, 0]>, and for the matrix A we have the QR
decomposition A = QR with

Q =
1

2


1 −1
1 1
1 1
1 −1

 , R =

[
2 −1
0 1

]
.

Use this to find the solution vector c. DO NOT COMPUTE A = QR. DO NOT USE THE NORMAL EQUATIONS
FOR THE MATRIX A.

We want to find c ∈ R2 such that ‖QRc− y‖2 is minimal. Let d := Rc, then we have to find d ∈ R2 such that ‖Qd− y‖2
is minimal. The normal equations give that Q>Qd = Q>y. The matrix Q has orthonormal columns, hence Q>Q = I
is the identity matrix. So we get

d = Q>y =
1

2

[
1 1 1 1
−1 1 1 −1

]
1
2
3
0

 =

[
3
2

]

1



and we obtain c by solving the upper triangular system Rc = d[
2 −1
0 1

] [
c1
c2

]
=

[
3
2

]
=⇒ c =

[
2.5
2

]

4. We want to find x such that x+ x5 = 3.

(a) Perform one step of the bisection method with a0 = 1, b0 = 2. Find k such that |bk − ak| ≤ 10−6.

f(x) = x5 +x−3, f(a0) = −1 < 0, f(b0) = 31 > 0, c0 = (a0 + b0)/2 = 1.5, f(1.5) = 1.55 +1.5−3 = 1.55−1.5 > 0,
hence [a1, b1] = [a0, c0] = [1, 1.5]. So we have x∗ ∈ (1, 1.5).

We have |bk − ak| = 2−k |b0 − a0| = 2−k. We have

2−k ≤ 10−6 ⇐⇒ (−k) log 2 ≤ log(10−6) ⇐⇒ k ≥ log(106)

log 2
= 19.93,

hence we need k ≥ 20.

(b) Perform one step of the secant method with x0 = 1, x1 = 2 to find x2.

x2 = x1 − f(x1)
x1 − x0

f(x1)− f(x0)
= 2− 31

2− 1

31− (−1)
= 2− 31

32 = 1 + 1
32

(c) Will the Newton method converge if we start with x0 sufficiently close to the solution x∗? Explain.

We showed: If f, f ′, f ′′are continuous and f ′(x∗) 6= 0, then the Newton method converges for x0 sufficiently close
to x∗. Here f(x) = x5 + x − 3, f ′(x) = 5x4 + 1. We know from the intermediate value theorem that there is a
root in the interval (1, 2). Since f ′(x) ≥ 1 > 0 there is a unique root, and we must have f ′(x∗) > 0. So all the
assumptions of the theorem are satisfied.

5. Consider the nonlinear system
x1 + x1x2 + x2 = 2, x1 − x2 − x1x22 = 0

(a) Perform one step of the Newton method starting with initial guess x(0) =

[
1
1

]
.

We have f(x) =

[
x1 + x1x2 + x2 − 2
x1 − x2 − x1x22

]
with the Jacobian matrix f ′(x) =

[
1 + x2 x1 + 1
1− x22 −1− 2x1x2

]
. For x(0) =[

1
1

]
we get y = f(x(0)) =

[
1
−1

]
and A = f ′(x(0)) =

[
2 2
0 −3

]
. Solving the linear system Ad = −y gives

d =

[
−1/6
−1/3

]
and the new approximation x(1) = x(0) + d =

[
5/6
2/3

]
.

(b) Write a Matlab program which uses the Newton method to find a solution, starting with initial guess

[
1
1

]
. The

program should print out the approximation for x after each iteration.

f = @(x) [ x(1)+x(1)*x(2)+x(2)-2 ; x(1)-x(2)-x(1)*x(2)^2 ];

fp = @(x) [ 1+x(2), x(1)+1; 1-x(2)^2, -1-2*x(1)*x(2)];

x = [1;1];

while 1

b = f(x); A = fp(x);

d = -A\b;

x = x + d % prints out x for each iteration

if norm(d)<1e-14

break

end

end

6. Let g(x) = 1
4

[
1 + x2 + cos(x1 + x2)
1 + x1 + sin(x1 − x2)

]
(a) Let D = [0, 3]× [0, 3]. We need to check the three assumptions of the contraction mapping theorem:

(1.) D is closed - true since the boundary of the square is included in D.
(2.) Show: x ∈ D =⇒ g(x) ∈ D. Let y = g(x). Then for x1, x2 ∈ [0, 1] we have

0 ≤ 2 + 0− 1 ≤ 4y1 = 1 + x2 + cos(x1 + x2) ≤ 1 + 1 + 1 ≤ 12

0 ≤ 1 + 0− 1 ≤ 4y2 = 1 + x1 + sin(x1 − x2) ≤ 1 + 1 + 1 ≤ 12
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(3.) Show: g is contraction on D. Note that D is convex. The Jacobian is

g′(x) =
1

4

[
− sin(x1 + x2) 1− sin(x1 + x2)

1 + cos(x1 − x2) − cos(x1 − x2)

]
and we have

‖g′(x)‖∞ ≤
1

4
max{1 + (1 + 1), (1 + 1) + 1)} =

3

4
=: q < 1

Now we can apply the contraction mapping theorem and obtain that the nonlinear system has a unique solution
x∗ in the set D.

(b) For x(0) =

[
0
0

]
we obtain x(1) = g(x(0)) =

[
1
2
1
4

]
. The a-posteriori estimate gives

∥∥∥x(1) − x∗∥∥∥
∞
≤ q

1− q

∥∥∥x(1) − x(0)∥∥∥
∞

=
3/4

1/4
· 1

2
=

3

2

which means that
∣∣x∗1 − 1

2

∣∣ ≤ 3
2 ,
∣∣x∗2 − 1

4

∣∣ ≤ 3
2 , i.e.,

x∗ ∈ D1 = [−1, 2]× [−5

4
,

7

4
]

Since we also know that x∗ ∈ D we actually know that

x∗ ∈ D1 ∩D = [0, 2]× [0,
7

4
].
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