
Practice problems and solutions for Exam 2

1. We are given the following information about f(x):

f(1) = 2, f ′(1) = 1, f(3) = 2, f ′(3) = −1

(a) Write down the divided difference table and the interpolating polynomial in Newton form.

Divided difference table: x1 = x2 = 1, x3 = x4 = 3

f [x1] = 2 f [x1, x2] = 1 f [x1, x2, x3] = − 1
2 f [x1, x2, x3, x4] = 0

f [x2] = 2 f [x2, x3] = 0 f [x2, x3, x4] = − 1
2

f [x3] = 2 f [x3, x4] = −1
f [x4] = 2

p(x) = f [x1] + f [x1, x2](x− x1) + f [x1, x2, x3](x− x1)(x− x2) + f [x1, x2, x3, x4](x− x1)(x− x2)(x− x3)

= 2 + 1 · (x− 1) + (− 1
2 )(x− 1)2 + 0 · (x− 1)2(x− 3)

p(x) = f [x4] + f [x3, x4](x− x4) + f [x2, x3, x4](x− x3)(x− x4) + f [x1, x2, x3, x4](x− x2)(x− x3)(x− x4)

= 2 + (−1)(x− 3) + (− 1
2 )(x− 3)2 + 0 · (x− 1)(x− 3)2

(b) Assume we know that the 4th derivative satisfies
∣∣f (4)(x)

∣∣ ≤ 10 for x ∈ [1, 2]. Find an upper bound for
|f(1.5)− p(1.5)|.
Let x̃ = 1.5. The error formula states that there exists t ∈ (1, 2) such that

|f(x̃)− p(x̃)| =
∣∣f (4)(t)

∣∣
4!

|(x̃− x1)(x̃− x2)(x̃− x3)(x̃− x4)|

≤ 10

24
(1.5− 1)2(1.5− 3)2 =

10

24
· 1

4
· 9

4

2. We want to find x such that x + x5 = 3.

(a) Perform one step of the bisection method with a0 = 1, b0 = 2. Find k such that |bk − ak| ≤ 10−6.

f(x) = x5 +x−3, f(a0) = −1 < 0, f(b0) = 31 > 0, c0 = (a0 + b0)/2 = 1.5, f(1.5) = 1.55 +1.5−3 = 1.55−1.5 > 0,
hence [a1, b1] = [a0, c0] = [1, 1.5]. So we have x∗ ∈ (1, 1.5).

We have |bk − ak| = 2−k |b0 − a0| = 2−k. We have

2−k ≤ 10−6 ⇐⇒ (−k) log 2 ≤ log(10−6) ⇐⇒ k ≥ log(106)

log 2
= 19.93,

hence we need k ≥ 20.

(b) Perform one step of the secant method with x0 = 1, x1 = 2 to find x2.

x2 = x1 − f(x1)
x1 − x0

f(x1)− f(x0)
= 2− 31

2− 1

31− (−1)
= 2− 31

32 = 1 + 1
32

(c) Will the Newton method converge if we start with x0 sufficiently close to the solution x∗? Explain.

We showed: If f, f ′, f ′′are continuous and f ′(x∗) 6= 0, then the Newton method converges for x0 sufficiently close
to x∗. Here f(x) = x5 + x − 3, f ′(x) = 5x4 + 1. We know from the intermediate value theorem that there is a
root in the interval (1, 2). Since f ′(x) ≥ 1 > 0 there is a unique root, and we must have f ′(x∗) > 0. So all the
assumptions of the theorem are satisfied.

3. Consider the nonlinear system
x1 + x1x2 + x2 = 2, x1 − x2 − x1x

2
2 = 0

Perform one step of the Newton method starting with initial guess x(0) =

[
1
1

]
.

We have f(x) =

[
x1 + x1x2 + x2 − 2
x1 − x2 − x1x

2
2

]
with the Jacobian matrix f ′(x) =

[
1 + x2 x1 + 1
1− x2

2 −1− 2x1x2

]
. For x(0) =

[
1
1

]
we get y = f(x(0)) =

[
1
−1

]
and A = f ′(x(0)) =

[
2 2
0 −3

]
. Solving the linear system Ad = −y gives d =

[
−1/6
−1/3

]
and the new approximation x(1) = x(0) + d =

[
5/6
2/3

]
.

4. Let g(x) = 1
4

[
1 + x2 + cos(x1 + x2)
1 + x1 + sin(x1 − x2)

]

1



(a) Let D = [0, 3]× [0, 3]. We need to check the three assumptions of the contraction mapping theorem:
(1.) D is closed - true since the boundary of the square is included in D.
(2.) Show: x ∈ D =⇒ g(x) ∈ D. Let y = g(x). Then for x1, x2 ∈ [0, 1] we have

0 ≤ 2 + 0− 1 ≤ 4y1 = 1 + x2 + cos(x1 + x2) ≤ 1 + 1 + 1 ≤ 12

0 ≤ 1 + 0− 1 ≤ 4y2 = 1 + x1 + sin(x1 − x2) ≤ 1 + 1 + 1 ≤ 12

(3.) Show: g is contraction on D. Note that D is convex. The Jacobian is

g′(x) =
1

4

[
− sin(x1 + x2) 1− sin(x1 + x2)

1 + cos(x1 − x2) − cos(x1 − x2)

]
and we have

‖g′(x)‖∞ ≤
1

4
max{1 + (1 + 1), (1 + 1) + 1)} =

3

4
=: q < 1

Now we can apply the contraction mapping theorem and obtain that the nonlinear system has a unique solution
x∗ in the set D.

(b) For x(0) =

[
0
0

]
we obtain x(1) = g(x(0)) =

[
1
2
1
4

]
. The a-posteriori estimate gives

∥∥∥x(1) − x∗
∥∥∥
∞
≤ q

1− q

∥∥∥x(1) − x(0)
∥∥∥
∞

=
3/4

1/4
· 1

2
=

3

2

which means that
∣∣x∗1 − 1

2

∣∣ ≤ 3
2 ,

∣∣x∗2 − 1
4

∣∣ ≤ 3
2 , i.e.,

x∗ ∈ D1 = [−1, 2]× [−5

4
,

7

4
]

Since we also know that x∗ ∈ D we actually know that

x∗ ∈ D1 ∩D = [0, 2]× [0,
7

4
].

2


