Error Propagation

In general a problem has
* several input values xp,...,x,
* several output values yi,...,y, which depend on the input values: y; = f1(x1,...,%n), .-, Vn = fu(X1,. .., %)

We consider the simplest case: one input value x and one output value

y=f(x)

Error propagation

For the exact input value x we get the exact output
y = f(x)

But in practice we have an inexact input value £ due to measurement error and rounding error: we have a relative error

X—x
& =

X
Then the best we can do is to compute

5= /()
Let us (unrealistically) assume that we can find this y exactly without further errors. This gives a relative error

B

y

This is called “error propagation”. If we have e.g. |&¢| ~ 107> can we conclude that the corresponding error &| in the
output has the same order of magnitude? Can it be much larger?
1
Example 1: Consider the function | f(x) = — |at x = 2. For the approximate value £ = 1.96 we obtain
X
X—x
=2 t=1.96 & = =|—-.02
1 y —
y=fl)=5=.5 §=F(8) = 1g¢ = 5102 g =22 ~[.0204
Here we seem to have
&~ —&
. r . . x- o ! . .
For the function | f(x) =x” | we obtain the condition number cf(x) = ———— = a. This is therefore well conditioned
X
unless || is huge.
1
X-— 1
Example 2: The function | f(x) = Inx| has the condition number cy(x) = lnx =y For x = 1.01 the function is ill
X X

conditioned: we obtain the condition number

1 1 1
= — = 1
Inx 1—x .01 00




using the Taylor approximation Inx~ 0+ 1- (x— 1) for x close to 1. E.g., for x = 1.01 and £ = 1.02 we obtain & = 100&;:

x=101 £=1.02 ge = ~[.0099
PR y-y
y = f(x) ~.00995 §=f(%)~.0198 gG="—"n

Note that |&;| > |&¢|. We seem to have

&~ 1008)3

Note that x and X are close to a zero of Inx. Since Inx ~ x—1 for x close to 1 we have y ~ .01 and y ~ .02 which corresponds
to a relative error of 1 whereas ~* ~ .01.

Claim: for small error |&| in the input we will get an error in the output
&R C-&

with a “magnification factor” c¢. This factor depends on the function f and the value x and is called the condition number
cr(x) |

How to find the condition number c/(x)

We have
Y=y B SE S x Rex (X ) Box
T M T i e T (f (x)f(x)> x
—_——
cr(x)
If % is close to x we have Jw ~ f(x).
RESULT: For X close to x we obtain
& ~ cy(x)ee| with the condition number | c(x) := xj{;)(:;)

is called the condition number of the function f at x .
The condition number determines how sensitive a problem is to small perturbations of input values.

If |cy| is not much larger than 1 we call the problem well-conditioned, in the case of |c| > 1 we call the problem ill-
conditioned.

Example 1: Consider the function | f(x) = — | has the condition number cy(x) = = —1. Therefore we have

1 x-(—x72)
X x~1

&~ —&

and the problem is well conditioned.

. : : . x-ox®!
Example 1’: For the function| f(x) = x* | with o € R we obtain the condition number ¢y (x) = —_— = .
x

This is well conditioned unless |o| > 1.

Example 2: The function | f(x) = Inx | has the condition number

=
==
—



For x = 1.01 we obtain the condition number

1 1

=—=100
1—x .01

1
cr(x) = nx
using the Taylor approximation Inx ~ 0+ 1 - (x— 1) for x close to 1. Therefore we have
& ~ 100 &

and the problem is ill conditioned.

Unavoidable error

We want to solve the problem y = f(x)
* on a computer with machine epsilon &,
¢ we have measurement error |x%"‘ < Emeas for the input value
* our program will output a machine number y

QUESTION: What amount of error Y=y

can we expect for a “good algorithm™?

&

We start with the exact input value x. We obtain a measured value X with the measurement error

X

‘ é gmeas

The computer will use instead of ¥ the closest machine number £ := fI(X) with the rounding error
xA B X‘ " 3 : "
———| < &y "machine epsilon

Hence we have a combined relative error

A

X—X

&

' § Emeas T EM

The ideal algorithm would use this value X and then compute

exactly (or with e.g. 100 digits accuracy). Due to error propagation we have

& ~ cp(x)€r = cf(x) (Emeas + €x)  With the condition number ¢ (x)

But the computer has to represent the output value as a machine number, so we use the closest machine number
¥:=f1)
where we have the rounding error

‘y—y'geM
y

Therefore we have the combined error

&

< |&|+em =|cf(x) (Emeas +Em) +Em | “unavoidable error”

RESULT: Consider the case without a measurement error:



* the “ideal algorithm” we give an error

&

as large as the unavoidable error | cs(x)ey + €y

Our actual program produces an output value y. Let us pretend that we know the error

ﬁ—y‘

* if we have | || > unavoidable error | our algorithm is “suboptimal”. In this case we call the algorithm “numerically

unstable”.
* otherwise our algorithm is (essentially) “optimal”. In this case we call the algorithm “numerically stable”.
Usually we don’t know the exact value y, so we don’t know &;.
If our computation uses single precision machine numbers we can proceed as follows:
* run the algorithm in single precision, this gives a computed result §
* run the algorithm in double precision, this gives a computed result

* approximate the error using

>

Y—Ja

Yd

_yN
y



