
Error Propagation
In general a problem has

• several input values x1, . . . ,xn

• several output values y1, . . . ,ym which depend on the input values: y1 = f1(x1, . . . ,xn), . . . ,yn = fn(x1, . . . ,xn)

We consider the simplest case: one input value x and one output value

y = f (x)

Error propagation
For the exact input value x we get the exact output

y := f (x)

But in practice we have an inexact input value x̂ due to measurement error and rounding error: we have a relative error

ex̂ :=
x̂� x

x

Then the best we can do is to compute

ŷ := f (x̂)

Let us (unrealistically) assume that we can find this ŷ exactly without further errors. This gives a relative error

eŷ =
ŷ� y

y

This is called “error propagation”. If we have e.g. |ex̂| ⇡ 10�5 can we conclude that the corresponding error |eŷ| in the
output has the same order of magnitude? Can it be much larger?

Example 1: Consider the function f (x) =
1
x

at x = 2. For the approximate value x̂ = 1.96 we obtain

x = 2 x̂ = 1.96 ex̂ =
x̂� x

x
= �.02

y = f (x) =
1
2
= .5 ŷ = f (x̂) =

1
1.96

⇡ .5102 eŷ =
ŷ� y

y
⇡ .0204

Here we seem to have

eŷ ⇡�ex̂

For the function f (x) = xa we obtain the condition number c f (x) =
x ·axa�1

xa = a . This is therefore well conditioned
unless |a| is huge.

Example 2: The function f (x) = lnx has the condition number c f (x) =
x · 1

x
lnx

=
1

lnx
. For x = 1.01 the function is ill

conditioned: we obtain the condition number

c f (x) =
1

lnx
⇡ 1

1� x
=

1
.01

= 100

1

using the Taylor approximation lnx ⇡ 0+1 · (x�1) for x close to 1. E.g., for x = 1.01 and x̂ = 1.02 we obtain eŷ ⇡ 100ex̂:

x = 1.01 x̂ = 1.02 ex̂ =
x̂� x

x
⇡ .0099

y = f (x)⇡ .00995 ŷ = f (x̂)⇡ .0198 eŷ =
ŷ� y

y
⇡ .99

Note that |eŷ|� |ex̂|. We seem to have

eŷ ⇡ 100ex̂

Note that x and x̂ are close to a zero of lnx. Since lnx ⇡ x�1 for x close to 1 we have y ⇡ .01 and ŷ ⇡ .02 which corresponds
to a relative error of 1 whereas x̂�x

x ⇡ .01.

Claim: for small error |ex̂| in the input we will get an error in the output

eŷ ⇡ c · ex̂

with a “magnification factor” c. This factor depends on the function f and the value x and is called the condition number

c f (x) .

How to find the condition number c f (x)

We have

eŷ :=
ŷ� y

y
=

f (x̂)� f (x)
f (x)

=
f (x̂)� f (x)

x̂� x
· x

f (x)
· x̂� x

x
⇡
✓

f 0(x)
x

f (x)

◆

| {z }
c f (x)

· x̂� x
x

If x̃ is close to x we have
f (x̃)� f (x)

x̃� x
⇡ f 0(x) .

RESULT: For x̂ close to x we obtain

eŷ ⇡ c f (x)ex̂ with the condition number c f (x) :=
x f 0(x)
f (x)

is called the condition number of the function f at x .

The condition number determines how sensitive a problem is to small perturbations of input values.

If |c f | is not much larger than 1 we call the problem well-conditioned, in the case of |c f | � 1 we call the problem ill-

conditioned.

Example 1: Consider the function f (x) =
1
x

has the condition number c f (x) =
x · (�x�2)

x�1 =�1. Therefore we have

eŷ ⇡�ex̂

and the problem is well conditioned.

Example 1’: For the function f (x) = xa with a 2 R we obtain the condition number c f (x) =
x ·axa�1

xa = a .

This is well conditioned unless |a|� 1.

Example 2: The function f (x) = lnx has the condition number

c f (x) =
x · 1

x
lnx

=
1

lnx

2

For x = 1.01 we obtain the condition number

c f (x) =
1

lnx
⇡ 1

1� x
=

1
.01

= 100

using the Taylor approximation lnx ⇡ 0+1 · (x�1) for x close to 1. Therefore we have

eŷ ⇡ 100ex̂

and the problem is ill conditioned.

Unavoidable error
We want to solve the problem y = f (x)

• on a computer with machine epsilon eM

• we have measurement error
�� x̃�x

x

�� emeas for the input value

• our program will output a machine number ŷ

QUESTION: What amount of error |eŷ|=
����
ŷ� y

y

���� can we expect for a “good algorithm”?

We start with the exact input value x. We obtain a measured value x̃ with the measurement error

����
x̃� x

x

���� emeas

The computer will use instead of x̃ the closest machine number x̂ := f l(x̃) with the rounding error

����
x̂� x̃

x̃

���� eM "machine epsilon"

Hence we have a combined relative error

|ex̂|=
����
x̂� x

x

����⇡
emeas + eM

The ideal algorithm would use this value x̂ and then compute

ỹ := f (x̂)

exactly (or with e.g. 100 digits accuracy). Due to error propagation we have

eỹ ⇡ c f (x)ex̃ = c f (x)(emeas + eM) with the condition number c f (x)

But the computer has to represent the output value as a machine number, so we use the closest machine number

ŷ := f l(ỹ)

where we have the rounding error

����
ŷ� y

y

���� eM

Therefore we have the combined error

|eŷ| |eỹ|+ eM = c f (x)(emeas + eM)+ eM “unavoidable error”

RESULT: Consider the case without a measurement error:

3

• the “ideal algorithm” we give an error |eŷ| as large as the unavoidable error c f (x)eM + eM

Our actual program produces an output value ŷ. Let us pretend that we know the error

|eŷ|=
����
ŷ� y

y

����

• if we have |eŷ|� unavoidable error our algorithm is “suboptimal”. In this case we call the algorithm “numerically

unstable”.

• otherwise our algorithm is (essentially) “optimal”. In this case we call the algorithm “numerically stable”.

Usually we don’t know the exact value y, so we don’t know eŷ.

If our computation uses single precision machine numbers we can proceed as follows:

• run the algorithm in single precision, this gives a computed result ŷ

• run the algorithm in double precision, this gives a computed result ŷd

• approximate the error using

ŷ� y
y

⇡ ŷ� ŷd

ŷd

4

