1 Introduction: Errors and where they come from

This course is called “Introduction to Numerical Analysis”. For most real-life problems we cannot find a simple answer
using pencil and paper. We want to use a computer to find an approximate answer. The central question is: how large is the
error, and how does it depend on the amount of work the computer does.

1.1 Exact symbolic results vs. approximate numerical results

For simple problems (such as problems in calculus text books as opposed to real-life problems) one can find a formula for
the result, e.g.,

1
I :/0 sin(x)dx = —cos(1) +cos(0) = 1 —cos(1)

In many applications we would like to get a numerical answer with a certain number of digits. We can evaluate 1 — cos(1)
with a calculator or Matlab and obtain /1 ~ .45969769413186 .

Now let us consider a slightly more complicated problem: We want to find
1
L= / sin(sin(x))dx.
0

We cannot proceed as above since the antiderivative of sin(sin(x)) cannot be expressed using finitely many “elementary
functions” like sin(x),In(x),... . We do know from calculus that the integral of a continuous function like sin(sin(x)) exists,
so there should be a way to find a numerical value. Actually, we know from calculus that the Riemann sums of rectangles
converge to the exact integral. Therefore we can divide the interval [0, 1] into e.g. n = 1000 subintervals of size h = L and

n
use on each subinterval the function value in the midpoint. This gives an approximate value

1000

. 1

L:=hY sin(sin((j— 5)h)) ~ 0.430606129785715
=1

where I used Matlab to compute the result. This is an example of a numerical algorithm.We would like to know: How large
is the error of I, compared to I, ? How fast does the error decrease if we increase the number n of subintervals? Are there
more efficient methods which give smaller errors with fewer operations?

1.2 How to measure errors

Assume that the exact value is x , and that we have an approximation X . Then we call X — x the absolute error, and we
would like |£ — x| to be small. E.g., for x = 0.02 and £ = 0.03 we have an absolute error of 0.01 .

In many applixations an absolute error of, say, 0.01 is more relevant in the case x = (.02 than in the case x = 200000 .
Therefore one is interested in the relative error
G=1 — f=x(1+¢).
X
E.g., for x =0.02 and £ = 0.03 we have &, = 0.5 = 50% . Note that the relative error may be positive or negative. We would
like |&,| to be small.

Note that for x = 0 the relative error is not defined, and we can only use the absolute error.

What happens if we combine two relative errors? Assume that x is the exact value, £ has a relative error of € with respect to
x , and ¥ has a relative error of & with respect to £ . What is the relative error of X with respect to x ? We have £ = x(1 + g;)
and

F=f1+&)=x(1+&)(1+&)=x(1+& +&+¢&8&),

hence ¥ = x(1+¢€) with € = € + & + €& ~ € + & for small values of ||, |&] .

ten it is easier to consider £=* instead of £=* . Since £ = x + (£ — x) we have |£ < |x|+ |Xx — x|. Hence ix < 0 implies
Often it i i id xxx d f)‘xx S h < H xxx < 6 impl

|£—x| < 6] < 6 (Jx]+[£—x])
(I1—=0)|8—x| <J|x]

If § <1 we have 1 — 8 > 0 and hence

X—x X—x

<o =

o
< -5 (1)

X

If O is small using the Taylor series shows that % ~ § + 62, hence ? and % are approximately equal.

1.3 The big picture: From real-life problem to computer output

In real life one does not make up problems like “Find I, = fol sin(sin(x))dx ” out of thin air. One starts with a certain
problem from an area such as engineering, physics, biology, finance,... and wants to obtain a numerical answer. In order to
understand how meaningful or meaningless the final computer output is, we have to investigate all possible sources of errors.

1.3.1 Example: Dropping a mass from a height &

I drop a piece of chalk from a height of 4 = 5 feet and want to find the time ¢ it takes until the chalk hits the floor. I only
have a simple 4-function calculator.

Newton’s law says:
mass X acceleration = sum of all forces acting on the mass.

I drop the chalk at time # = 0 . Let us denote the height of the chalk at time 7 by y(z) . Then y'(¢) is the velocity, and y”
is the acceleration. The force from gravity acting on the mass is —mg where g ~ 9.81meter/ second? ~ 32 feet/ second” .
Therefore we have my” (1) = —mg and y(0) = &, y'(0) = 0 . Taking antiderivatives we obtain

8

Vi) =—gt, y)=h-5

and the time #(is obtained by solving

ytg) =0 <= gtg:h = = o

In our case the time 7y in seconds is obtained as ty = 4/ 23—5 .

I need to compute x = /a for a = % . Unfortunately my calculator does not have a v -button. I therefore use the following
algorithm: T start with an initial guess, e.g., x = 1 . If x is not the exact value of y/a , we must have that \/a is located
between x and ¢ , and I can hope that the arithmetic mean (x+ ¢)/2 is an improved guess for \/a . I therefore use the
following algorithm:

x:=1
fori=1to5:
xi=(x+9)/2

(Note that in general x = 1 for the initial guess and 5 for the number of iterations may not be good choices). This is called
the “Babylonian algorithm” because it was supposedly known to the ancient Babylonians. If I use this algorithm for a = 15—6
I obtain an approximation 0.5590169944 for \/a using my calculator. Is this really the exact value for the time 7y ?

1.3.2 Error in given data

For every problem there are some input values. In general they are not known exactly because of measurement or other
errors. In our example the initial height £ is an input parameter, and in practice I might be able to measure it with a relative
error of 107> , but not exactly. Also the value of the acceleration g ~ 9.8 Imeter/ second? is an input value which I do not
know exactly.

Even if I do everything else exactly, the error of the given data propates through the whole problem and pollutes my final
result. If my problem is very sensitive to small perturbations in my given data (“ill-conditioned” problem) this will cause
very large errors in the result, and there is no way to avoid this.

1.3.3 Modeling error

I have to translate my real life problem into a mathematical problem. That means that I have to make some simplifications.
For our example problem I assumed that the only force is —mg . In reality there is another force which comes from the
friction with the air. Also, the force from gravity is not really constant, e.g., for & = 1000 miles I need to use a different
model.

Finding a mathematical model for a real life problem is a topic of application areas like engineering, biology, finance etc.
Therefore we will not investigate modeling errors in this class, but we should be aware that they are often the largest source
of error in a computed result.

1.3.4 Approximation error

Typically I cannot solve my mathematical problem exactly with a finite number of operations. Therefore I have to pick an
algorithm which gives a good approximation. In the example, we used 5 iterations of the Babylonian algorithm instead of
the exact value of \/a . Another example is the approximation of functions using Taylor expansions (see below) where the
error is also called “truncation error”. Yet another example was the approximation of an integral /; by a sum of rectangles
in section 1.1.

1.3.5 Roundoff error

Theoretically I can imagine that I perform my algorithm using arithmetic with infinite precision. In practice I have to pick
a certain computer which has finite precision machine numbers, and finite precision machine arithmetic. Therefore I will
obtain a different result, and the error between the infinite precision computation and the machine arithmetic computation is
called roundoff error.

We will investigate how much roundoff error we can expect for a “good algorithm” (the so-called “unavoidable error”).
“Bad algorithms” can give unnecesserarily large roundoff errors (“numerically unstable” algorithms).

1.4 Taylor series

An important tool for approximation is the Taylor expansion. We will use this many times, and we will need a theorem for
the remainder term.

Theorem 1.1 Assume that f has continuous derivatives up to order n+ 1 between x and xy . Then

fx) = f(x0) + f(x0) (x = xo) +---+f(”)(XO)(x_n§m)n + Ryt

with the remainder term
(x _ xO)nH

Rn+l :f(n+l)(t) (I’l+]),

where t is between x and x .

Example We want to compute y = sin(0.1) using a simple four function calculator. We choose xo = 0 (since we know the
values of sin0 and cos0Q , and 0 is close to x = 0.1). We approximate y = sin(0.1) by the Taylor series with terms up to
order n =6 . Note that f(xo) =sin(0) =0, f'(xg) =cos(0) =1, f"(x0) =0, fO(x0) = =1, fH(x0) =0, fO(x0) =1,
£©)(xy) = 0 and therefore the approximation is

X x 0.1 o0.1°
F=0 0 104+ 40=014+—— — 2 —0.099833416666. ..
y=0rxr =g 0+ 5+ T 6 T 120
and
X 0 19810~
=R = |—cos() | <1~ ~1.98-107',
=51 =Rl = |- eost0 | < 1- 35

This is an estimate for the absolute error [§ — y| .

For the relative error ’}N);y‘ we first note that }y =Y ’ < % =: 8~ 1.98744-1071° . Then we obtain with (1) that

N
-5

<

s
y

~1.98744.10719,

