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1 Fixed Point Iteration and Contraction Mapping Theorem

Notation: For two sets A,B we write A⊂ B iff x ∈ A =⇒ x ∈ B. So A⊂ A is true. Some people use the notation “⊆” instead.

1.1 Introduction

Consider a function y = g(x) where x,y ∈ Rn:  y1
...

yn

=

 g1(x1, . . . ,xn)
...

gn(x1, . . . ,xn)


We assume that g(x) is defined for x ∈ D where D is a subset of Rn.

The goal is to find a solution x∗ of the fixed point equation

g(x) = x.

A method to find x∗ is the fixed point iteration: Pick an initial guess x(0) ∈ D and define for k = 0,1,2, . . .

x(k+1) := g(x(k))

Note that this may not converge. But if the sequence x(k) converges, and the function g is continuous, the limit x∗ must be a
solution of the fixed point equation.

1.2 Contraction Mapping Theorem

The following theorem is called Contraction Mapping Theorem or Banach Fixed Point Theorem.

Theorem 1. Consider a set D⊂ Rn and a function g : D→ Rn. Assume

1. D is closed (i.e., it contains all limit points of sequences in D)

2. x ∈ D =⇒ g(x) ∈ D

3. The mapping g is a contraction on D: There exists q < 1 such that

∀x,y ∈ D : ‖g(x)−g(y)‖ ≤ q‖x− y‖ (1)

Then

1. there exists a unique x∗ ∈ D with g(x∗) = x∗

2. for any x(0) ∈ D the fixed point iterates given by x(k+1) := g(x(k)) converge to x∗ as k→ ∞

3. x(k) satisfies the a-priori error estimate

∥∥x(k)− x∗
∥∥≤ qk

1−q

∥∥x(1)− x(0)
∥∥ (2)

and the a-posteriori error estimate ∥∥x(k)− x∗
∥∥≤ q

1−q

∥∥x(k)− x(k−1)∥∥ (3)
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Proof. Pick x(0) ∈ D and define x(k) for k = 1,2, . . . by x(k) := g(x(k−1)). We have from the contraction property (1)∥∥x(k+1)− x(k)
∥∥= ∥∥g(x(k))−g(x(k−1))

∥∥≤ q
∥∥x(k)− x(k−1)∥∥ (4)

and hence ∥∥x(k+1)− x(k)
∥∥≤ qk

∥∥x(1)− x(0)
∥∥ (5)

Let d :=
∥∥x(1)− x(0)

∥∥. We have from the triangle inequality and (5)∥∥x(k)− x(k+`)
∥∥≤ ∥∥x(k)− x(k+1)∥∥+ · · ·+∥∥x(k+`−1)− x(k+`)

∥∥
≤ qkd + · · ·+qk+`−1d = qkd (1+q+ · · ·+q`−1)∥∥x(k)− x(k+`)
∥∥≤ qkd

1
1−q

(6)

using the sum of the geometric series ∑
`−1
j=0 q j ≤ ∑

∞
j=0 q j = 1/(1−q). Note that (6) shows that the sequence x(k) is a Cauchy

sequence. Therefore it must converge to a limit x∗ ∈ Rn (since the space Rn is complete). As D is closed, we must have
x∗ ∈ D.

We need to show that x∗ = g(x∗): We have x(k+1) = g(x(k)), hence

lim
k→∞

x(k+1) = lim
k→∞

g(x(k))

The limit of the left hand side is x∗. Note that because of (1) the function g must be continuous. Therefore

lim
k→∞

g(x(k)) = g( lim
k→∞

x(k)) = g(x∗).

Next we need to show that the fixed point x∗ is unique. Assume that we have fixed points x∗ = g(x∗) and y∗ = g(y∗). Then
we obtain using the contraction property (1)∥∥x∗− y∗

∥∥= ∥∥g(x∗)−g(y∗)
∥∥≤ q

∥∥x∗− y∗
∥∥

implying (1−q)
∥∥x∗− y∗

∥∥≤ 0 and therefore
∥∥x∗− y∗

∥∥= 0, i.e., x∗ = y∗.

The a-priori estimate (2) follows from (6) by letting ` tend to infinity. For the a-posteriori estimate use (2) with k = 1 for
x̃(0) := x(k), x̃(1) = x(k+1).

1.3 Proving the Contraction Property

The contraction property is related to the Jacobian g′(x) which is an n× n matrix for each point x ∈ D. If the matrix norm
satisfies ‖g′(x)‖ ≤ q < 1 then the mapping g must be a contraction:

Theorem 2. Assume the set D ⊂ Rn is convex and the function g : D→ Rn has continuous partial derivatives
∂g j

∂k
in D. If

for q < 1 the matrix norm of the Jacobian satisfies

∀x ∈ D :
∥∥g′(x)

∥∥≤ q (7)

the mapping g is a contraction in D and satisfies (1).

Proof. Let x,y ∈ D. Then the points on the straight line from x to y are given by x+ t(y− x) for t ∈ [0,1]. As D is convex all
these points are contained in D. Let G(t) := g

(
x+ t(y− x)

)
, then by the chain rule we have G′(t) = g′

(
x+ t(y− x)

)
(y− x)

and

g(y)−g(x) = G(1)−G(0) =
∫ 1

0
G′(t)dt =

∫ 1

0
g′
(
x+ t(y− x)

)
(y− x)dt

As an integral of a continuous function is a limit of Riemann sums the triangle inequality implies
∥∥∥∫ b

a F(t)dt
∥∥∥≤ ∫ b

a ‖F(t)‖dt:

‖g(y)−g(x)‖ ≤
∫ 1

0

∥∥g′
(
x+ t(y− x)

)
(y− x)dt

∥∥≤ ∫ 1

0

∥∥g′
(
x+ t(y− x)

)∥∥︸ ︷︷ ︸
≤q

‖y− x‖dt ≤ q‖y− x‖

This is usually the easiest method to prove that a given mapping g is a contraction, see the examples in sections 1.5, 1.6.
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1.4 A-priori and a-posteriori error estimates

The error estimates (2), (3) are useful for figuring out how many iterations we need. For this we need to know the contraction
constant q (typically we get this from (7)).

A-priori estimate: For an initial guess x(0) we can find x(1). Without computing anything else we then have the error
bound

∥∥x(k)− x∗
∥∥ ≤ qk

1−q

∥∥x(1)− x(0)
∥∥ for all future iterates x(k), before (“a-priori”) we actually compute them. We can e.g.

use this to find a value k such that
∥∥x(k)− x∗

∥∥ is below a given tolerance.

A-posteriori estimate: After we have actually computed x(k) (“a-posteriori”) we would like to know where the true
solution x∗ is located. Let

δk :=
q

1−q

∥∥x(k)− x(k−1)∥∥, Dk := {x |
∥∥x− x(k)

∥∥≤ δk}

The a-posteriori estimate states that x∗ is contained in the set Dk. Note:

• the “radius” δk of Dk decreases at least by a factor of q with each iteration: δk+1 ≤ qδk

• the sets Dk are nested: D1 ⊃ D2 ⊃ D3 ⊃ ·· ·

To show Dk+1 ⊂ Dk assume x ∈ Dk+1. Then

∥∥x− x(k)
∥∥≤ ∥∥x− x(k+1)∥∥︸ ︷︷ ︸

≤δk+1

+
∥∥x(k+1)− x(k)

∥∥≤ ( q
1−q

+1
)∥∥x(k+1)− x(k)

∥∥ (4)
≤ 1

1−q
q
∥∥x(k)− x(k−1)∥∥= δk (8)

If we use the ∞-norm:
∥∥x(k)− x∗

∥∥
∞
≤ δk means that for each component x∗j we have a bracket

x∗j ∈ [x(k)j −δk,x
(k)
j +δk],

i.e., the set Dk is a square/cube/hypercube with side length 2δk centered in x(k).

1.5 Example

We want to find x1,x2 satisfying the nonlinear system

10x1 + x2 + sin(x1 + x2) = 1 (9)

x1 +10x2− cos(x1− x2) = 2 (10)

We first have to rewrite this system in fixed point form x = g(x). If we solve the first equation for x1 in 10x1, and we solve
the second equation for x2 in 10x2 we get the following system

x1 =
1

10 [1− x2− sin(x1 + x2)] (11)

x2 =
1

10 [2+ x1 + cos(x1− x2)] (12)

This is in fixed point form x = g(x) with g(x) = 1
10

[
1− x2− sin(x1 + x2)
2+ x1 + cos(x1− x2)

]
.

First we want to show that g is a contraction using Theorem 2. Therefore we first have to find the Jacobian g′(x):

g′(x) = 1
10

[
−cos(x1 + x2) −1− cos(x1 + x2)

1− sin(x1− x2) sin(x1− x2)

]

3
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Let A := g′(x). Let us use the ∞-norm. We need to find an upper bound for ‖A‖
∞
= max{|a11|+ |a12| , |a21|+ |a22|}. We

obtain for any x1,x2 ∈ R

|a11|= 1
10 |−cos(x1 + x2)| ≤ 1

10 , |a12|= 1
10 |−1− cos(x1 + x2)| ≤ 1

10(1+1)

|a21|= 1
10 |1− sin(x1− x2)| ≤ 1

10(1+1), |a22| ≤ 1
10 |sin(x1− x2)| ≤ 1

10

Therefore for any x ∈ R2 we have ∥∥g′(x)
∥∥

∞
≤ 3

10
= q < 1.

By Theorem 2 we therefore obtain that g is a contraction for all of R2.

We now want to use Theorem 1. We need to pick a set D such that the three assumptions of the theorem are satisfied. We
consider two choices:

First choice D =R2: We can use the set D =R2. This set is closed. For any x ∈R2 we certainly have that g(x) ∈R2. We
have also shown that g is a contraction for all of R2. Therefore we obtain from Theorem 1 that the nonlinear system g(x) = x
has exactly one solution x∗ in all of R2.

Second choice D = [−1,1]× [−1,1]: We can use for D the square with −1 ≤ x1 ≤ 1 and −1 ≤ x2 ≤ 1. This is a closed
set (the boundary of the square is included). We now have to check that for x ∈D we have that y = g(x) ∈D: We have using
−1≤ sinα ≤ 1, −1≤ cosα ≤ 1

− 2
10 = 1

10 (1−1−1)≤ y1 =
1
10 [1− x2− sin(x1 + x2)]≤ 1

10 (1+1+1) = 3
10

0 = 1
10 (2−1−1)≤ y2 =

1
10 [2+ x1 + cos(x1− x2)]≤ 1

10 (2+1+1) = 4
10

therefore y ∈ D and the second assumption of the theorem is satisfied. We already showed that g is a contraction for all of
R2, so the third assumption definitely holds for x,y ∈ D. We can now apply Theorem 1 and obtain that the nonlinear system
has exactly one solution x∗ which is located in the square D = [−1,1]× [−1,1].

Numerical Computation: We start with the initial guess x(0) = (0,0)>. After each iteration we find δk and the square Dk
containing x∗:

k x(k) δk Dk

1 (.1, .3)> 1.3 ·10−1 [−.02857, .2286]× [.1714, .4286]
2 (.03106, .3080)> 3.0 ·10−2 [.00151, .06060]× [.2785, .3376]
3 (.03594, .2993)> 3.7 ·10−3 [.03221, .03967]× [.2956, .3030]
4 (.03717, .3001)> 5.3 ·10−4 [.03664, .03770]× [.2996, .3007]
5 (.03689, .3003)> 1.2 ·10−4 [.03677, .03701]× [.3001, .3004]

Note: (i) δk decreases at least by a factor of q = 0.3 with each iteration.

(ii) The sets Dk are nested: D1 ⊃ D2 ⊃ D3 ⊃ ·· ·

1.6 Using the Fixed Point Theorem without the Assumption g(D)⊂ D

The tricky part in using the contraction mapping theorem is to find a set D for which both the 2nd and 3rd assumption of the
fixed point theorem hold:

• x ∈ D =⇒ g(x) ∈ D

• g is a contraction on D

Typically we can prove that ‖g′(x)‖ ≤ q < 1 for x in some convex region D̃. We suspect that there is a solution x∗ of the fixed
point equation in D̃. But it may not be true that g(x) ∈ D̃ for all x ∈ D̃.

In this case we may be able to prove a result by computing a few iterates x(k): Start with k = 0 and an initial guess x(0) ∈ D̃.
Then repeat

4
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• let k := k+1 and compute x(k) := g(x(k−1))

• compute δk :=
q

1−q

∥∥x(k)− x(k−1)∥∥, let Dk := {x |
∥∥x− x(k)

∥∥≤ δk}

until either Dk ⊂ D̃ or x(k) /∈ D̃.

If the iterates exit from the set D̃ we cannot conclude anything. But as long as the points x(k) stay inside D̃ we have δk+1≤ qδk
and Dk+1 ⊂Dk. So we expect that for some k the condition Dk ⊂ D̃ will be satisfied (if x(k)converges to a limit in the interior
of D̃ the loop must terminate with Dk ⊂ D̃; but in general it is possible that the loop never terminates). If the loop does
terminate with Dk ⊂ D̃ for k = K we have the following result:

Theorem 3. Let D̃⊂ Rn and assume that the function g : D̃→ Rn satisfies for q < 1

∀x,y ∈ D̃ : ‖g(x)−g(y)‖ ≤ q‖x− y‖

Let x(0) ∈ D̃ and define for k = 0,1,2, . . .

x(k+1) := g(x(k)), δk :=
q

1−q

∥∥x(k)− x(k−1)∥∥, Dk := {x |
∥∥x− x(k)

∥∥≤ δk} (13)

If for some K we have x(K−1) ∈ D̃ and DK ⊂ D̃ there holds

• the equation g(x) = x has a unique solution x∗ in D̃

• this solution satisfies x∗ ∈ Dk for all k ≥ K

Proof. Let x ∈ DK . We want to show that g(x) ∈ DK : As DK ⊂ D̃ the contraction property gives using the definition of Dk
and δk ∥∥g(x)− x(K)

∥∥≤ q
∥∥x− x(K−1)∥∥≤ q

∥∥x− x(K)
∥∥+q

∥∥x(K)− x(K−1)∥∥≤ qδK +(1−q)δK = δK

As DK is closed and DK ⊂ D̃ the set D := DK satisfies all three assumptions of the fixed point theorem Theorem 1. Hence
there is a unique solution x∗ ∈ D. The a-posteriori estimate (3) states that x∗ ∈ Dk for all iterates x(k) with k ≥ K. Assume
that there is another fixed point y∗ ∈ D̃ with g(y∗) = y∗. Then

‖y∗− x∗‖= ‖g(y∗)−g(x∗)‖ ≤ q‖y∗− x∗‖

As q < 1 we must have ‖y∗− x∗‖= 0.

Summary:

• Find a convex set D̃ for which you suspect x∗ ∈ D̃ and where you can show ‖g′(x)‖ ≤ q < 1

• Pick x(0) ∈ D̃ and perform the fixed point iteration:
for each iteration:

– find x(k) and Dk

– if x(k) /∈ D̃: stop (we can’t conclude anything)

– if Dk ⊂ D̃: success: there is a unique solution x∗ ∈ D̃, and there holds x∗ ∈Dk for this and all following iterations

Example: Let g(x) := 1
3

[
x1− x1x2 +1
x2 + x1x2

2 +1

]
. Then the Jacobian is g′(x) = 1

3

[
1− x2 −x1

x2
2 1+2x1x2

]
.

Let us try to use D̃ = [0,a]× [0.a] with a≤ 1 and the ∞-norm. We then obtain for x ∈ D̃ that∥∥g′(x)
∥∥

∞
≤ 1

3 max{1+a,a2 +1+2a2}

For a = 1 we get ‖g′(x)‖
∞
≤ 4

3 which is too large. So we try a = 0.6 which gives ‖g′(x)‖
∞
≤ 2.08

3 =: q < 1. Therefore g is a

contraction on D̃ = [0, .6]× [0, .6]. Note that g(
[

0.6
0.6

]
) =

[
0.41333
0.60533

]
/∈ D̃, so D̃ does not satisfy all three assumptions of

Theorem 1.

5
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For x(0) =
[

0
0

]
we obtain

x(1) = (.33333, .33333)> ∈ D̃, D1 = [−0.42029, 1.08696]× [−0.42029, 1.08696] 6⊂ D̃

x(2) = (.40741, .45679)> ∈ D̃, D2 = [0.12829, 0.68653]× [0.17767, 0.73591] 6⊂ D̃

x(3) = (.40710, .51393)> ∈ D̃, D3 = [0.27791, 0.53629]× [0.38474, 0.64313] 6⊂ D̃

x(4) = (.39929, .54049)> ∈ D̃, D4 = [0.33926, 0.45933]× [0.48045, 0.60052] 6⊂ D̃

x(5) = (.39449, .55238)> ∈ D̃, D5 = [0.36761, 0.42138]× [0.52549, 0.57926]⊂ D̃

Therefore we can conclude from Theorem 3 that there exists a unique solution x∗ ∈ D̃ = [0,0.6]× [0,0.6]. This solution x∗

is located in the smaller square D5. For k = 5,6,7, . . . we obtain x∗ ∈ Dk where Dk is a square with side length 2δk. As
δk ≤ qk−5δ5 ≤

(2.08
3

)k−5 0.027 we can obtain arbitrarily small squares containing the solution if we choose k sufficiently
large.

1.7 How to rewrite a nonlinear system in fixed point form: simplified Newton method

For a given nonlinear system f (x) =

 0
...
0

 there are several ways to rewrite it in the form g(x) = x. How can we do this so

that the function g is a contraction?

First consider the Newton method: For a current guess x(k) we solve the linear system

f ′(x(k))d =− f (x(k)) (14)

and let x(k+1) := x(k)+d = x(k)− f ′(x(k)−1 f (x(k)). Therefore we have the iteration function g(x) = x− f ′(x)−1 f (x) .

The Newton method is expensive: For each step we have to evaluate f (x(k)) and f ′(x(k)) which are n+n2 function evaluations.
Then we have to solve an n× n linear system which costs n3

3 +O(n2) operations. In particular for large n this may be too
much work per step.

We can “cheat” as follows: instead of solving (14) with the new Jacobian matrix f ′(x(k)) we keep reusing the first Jacobian

A := f ′(x(0)) and solve

Ad =− f (x(k)) (15)

and let x(k+1) := x(k) + d = x(k)−A−1 f (x(k)). Therefore we have now the iteration function g(x) = x−A−1 f (x) . This

“simplified Newton method” is much cheaper: We only evaluate the initial Jacobian matrix A := f ′(x(0)) and compute its
LU decomposition. For each step we can solve the linear system (15) using forward and back substitution. Hence we have
for each step only n function evaluations and n2 operations to solve the linear system.

The simplified Newton method is still locally convergent. But it only converges with order 1 (whereas the Newton method
converges with order 2). This is shown in the following theorem:

Theorem 4. Assume we have f (x∗) = 0 where f ′(x∗) is nonsingular and the partial derivatives ∂ fi
∂x j

and ∂ 2 fi
∂x j∂xk

are continuous

near x∗. Then the simplified Newton method will converge if x(0) is sufficiently close to a solution x∗.

Proof. Assume we have a solution x∗, and for
∥∥x− x(0)

∥∥
∞
≤ ε we have bounds

∣∣∣ ∂ 2 fi(x)
∂x j∂xk

∣∣∣ ≤Mi jk and
∥∥ f ′(x)−1

∥∥
∞
≤ c1. Let

c2 := maxi ∑ j,k Mi jk. Then ‖ f ′(x)− f ′(y)‖
∞
≤ c2 ‖x− y‖

∞
. Now assume ‖x− x∗‖ ≤ δ and

∥∥x(0)− x∗
∥∥≤ δ (we will define δ

in a moment). Then

g′(x) = I−A−1 f ′(x) = A−1
(

f ′(x(0))− f ′(x)
)

∥∥g′(x)
∥∥

∞
≤
∥∥∥ f ′(x(0))

∥∥∥∥∥∥ f ′(x(0))− f ′(x)
∥∥∥≤ c1c2

∥∥∥x(0)− x
∥∥∥︸ ︷︷ ︸∥∥∥x(0)− x∗

∥∥∥+‖x∗− x‖

≤ c1c22δ

6
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Now we can define δ > 0 such that δ ≤ ε and c1c22δ ≤ q < 1. Hence for D := {x | ‖x− x∗‖ ≤ δ} we have that D is closed
and that g is a contraction on D with q < 1. We also have for x ∈D that ‖g(x)− x∗‖= ‖g(x)−g(x∗)‖ ≤ q‖x− x∗‖ ≤ qδ ≤ δ ,
hence g(x) ∈ D.

We can now use the contraction mapping theorem to show that there exists a unique solution in a region around our initial
guess x(0).

We assume: Near our initial guess x(0) we have bounds βi jk for the 2nd partial derivatives:∣∣∣∣∂ 2 fi(x)
∂x j∂xk

∣∣∣∣≤ βi jk for
∥∥x− x(0)

∥∥
∞
≤ R

Then we have for x with
∥∥x− x(0)

∥∥
∞
≤ R∣∣∣∣ ∂ fi

∂x j
(x(0))− ∂ fi

∂x j
(x)
∣∣∣∣≤ ( n

∑
k=1

βi jk

)
︸ ︷︷ ︸
=: Bi j

∥∥∥x(0)− x
∥∥∥

∞

g′(x) = A−1
(

f ′(x(0))− f ′(x)
)

∥∥g′(x)
∥∥

∞
≤
∥∥abs(A−1)B

∥∥
∞︸ ︷︷ ︸

=: M

·
∥∥∥x(0)− x

∥∥∥
∞

(16)

where abs(A−1) ∈ Rn×n has entries which are the absolute values of the entries of A−1 and B ∈ Rn×n has entries Bi j. Here

We perform one Newton step: (the first step of the simplified Newton method is an actual Newton step)

d :=−A−1
0 f (x(0)), x(1) := x(0)+d, δ := ‖d‖

∞

We want to use Theorem 3 on the region D̃r :=
{

x |
∥∥x− x(0)

∥∥
∞
≤ r
}

with a suitable r ≤ R.

We need to choose r ∈ (0,R] so that the assumptions of the theorem are satisfied:

• g′ is a contraction for x ∈ D̃r: Because of (16) we need q := Mr
!
< 1

• the “a-posteriori region” D1 =
{

x |
∥∥x− x(1)

∥∥
∞
≤ q

1−q

∥∥x(1)− x(0)
∥∥

∞

}
is a subset of D̃r. This is satisfied if

∥∥∥x− x(0)
∥∥∥

∞

≤
∥∥∥x− x(1)

∥∥∥
∞

+
∥∥∥x(1)− x(0)

∥∥∥
∞

≤ q
1−q

δ +δ
!
≤ r

i.e.,
δ

1−q

!
≤ r (17)

With q := Mr < 1 the condition (17) can be written as

δ
!
≤ r(1−Mr) =: F(r)

Note that the quadratic function F(r) = r(1−Mr) is zero at r = 0 and r = M−1 and has at 1
2 M−1 the maximum F(1

2 M−1) =
1
4 M−1. Hence we need δ ≤ 1

4 M−1. The smallest r with F(r)≥ δ is r1 := 1
2 M−1

(
1−
√

1−4Mδ
)

. We have shown:

Theorem 5. Assume that for
∥∥x− x(0)

∥∥
∞
≤ R

• the functions f (x), ∂ fi
∂x j

(x), ∂ 2 fi
∂x j∂xk

are continuous

• we have bounds
∣∣∣ ∂ 2 fi

∂x j∂xk
(x)
∣∣∣≤ βi jk

7
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Let A := f ′(x(0)) and let

δ :=
∥∥∥A−1 f (x(0))

∥∥∥
∞

, Bi j :=
n

∑
k=1

βi jk, M :=
∥∥abs(A−1)B

∥∥
∞
, r1,2 :=

1∓
√

1−4Mδ

2M

If δ ≤ 1
4 M−1 and R≥ r1

• the problem f (x∗) =~0 has a unique solution x∗ in the region
∥∥x− x(0)

∥∥
∞
≤min{r2,R}

• for x(1) := x(0)−A−1 f (x(0)) we have
∥∥∥x∗− x(1)

∥∥∥
∞

≤ δ

(Mr1)−1−1
=

4Mδ 2

(1−4Mδ )+
√

1−4Mδ

• the simplified Newton method starting with x(0) converges to x∗.

Note that we do not assume that the problem f (x) =~0 has a solution.

Example 1: Find a zero of f (x) =
[

x1 + sin(x1 + x2)− 1
2

x2 + cos(x1− x2)−1

]
. We have f ′(x) =

[
1+ cos(x1 + x2), cos(x1 + x2)
−sin(x1− x2), 1+ sin(x1− x2)

]
.

Note that all second derivatives
∂ 2 fi

∂x j∂xk
(x) are of the form ±sin(· · ·) or ±cos(· · ·), hence βi jk = 1 for all i, j,k where R is

arbitrarily large. We have Bi j = ∑
2
k=1 βi jk = 2 for all i, j.

First try x(0) =
[

0
0

]
: Then f (x(0)) =

[
−.5

0

]
, A := f ′(x(0)) =

[
2 1
0 1

]
, A−1 =

[ 1
2 −1

2
0 1

]
and d = −A−1 f (x(0)) =[ 1

4
0

]
, δ = ‖d‖

∞
= 1

4 . Hence

abs(A−1)B =

[ 1
2

1
2

0 1

][
2 2
2 2

]
=

[
2 2
2 2

]
, M :=

∥∥∥∥[ 2 2
2 2

]∥∥∥∥
∞

= 4

But here δ = 1
4 is greater than 1

4 M−1 = 1
16 , so we cannot use the theorem. We need an initial guess closer to the solution.

The Newton step starting at x(0) =
[

0
0

]
gives x(1) =

[ 1
4
0

]
.

Second try x(0)=
[ 1

4
0

]
: Then f (x(0))=

[
−.002596
−.031088

]
, A := f ′(x(0))=

[
1.9689 .96891
−.2474 1.2474

]
, A−1 =

[
.46273 −.35942
.091776 .73038

]
and d = A−1 f (x(0)) =

[
−.0099723
.022944

]
, δ = ‖d‖

∞
= .022944. Hence

abs(A−1)B =

[
.46273 .35942
.091776 .73038

][
2 2
2 2

]
=

[
1.6443 1.6443
1.6443 1.6443

]
, M :=

∥∥abs(A−1)B
∥∥

∞
= 3.2886

Now δ = .022944 is less than 1
4 M−1 = 0.07602 , yielding r1 = .024999, r2 = .27908. Therefore the theorem states that

there is a unique solution in the square [−.0290799, .52908]× [−.27908, .27908] of size 2r2, centered in x(0). This solution
is actually located in the smaller square [.237972, 0.242083]× [0.0208887, 0.0249992] of size 2 δ

(Mr1)−1−1 , centered in x(1).

f = @(x) [ x(1)+sin(x(1)+x(2))-.5 ; x(2)+cos(x(1)-x(2))-1 ];
fp = @(x)[ 1+cos(x(1)+x(2)) , cos(x(1)+x(2)) ; -sin(x(1)-x(2)) , 1+sin(x(1)-x(2))];
B = [2 2;2 2]; % from bounds beta_{ijk} for 2nd derivatives

x = [0;0]; % initial guess
for i=1:5
b = f(x); A = fp(x); Ai = inv(A);
d = -Ai*b; delta = norm(d,Inf);
x = x + d;

8
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fprintf(’x = [%g,%g]\n’,x);
M = norm(abs(Ai)*B,Inf);
if delta <= 1/(4*M) % condition for delta in theorem
r1 = (1-sqrt(1-4*M*delta))/(2*M); % condition for r1 is true since bounds hold everywhere
e = delta/(1/(M*r1)-1); % a-posteriori error bound
fprintf(’ inf-norm error <= %g\n’,e)

end
end

This prints

x = [0.25,0]
x = [0.240028,0.022944]

inf-norm error <= 0.00205526
x = [0.239842,0.0233441]

inf-norm error <= 5.39279e-07
x = [0.239842,0.0233442]

inf-norm error <= 5.45924e-14
x = [0.239842,0.0233442]

inf-norm error <= 5.60471e-28

Note that the actual errors
∥∥x(k)− x∗

∥∥
∞

for k = 2,3,4,5 are 4 · 10−4, 1.3 · 10−7, 1.3 · 10−14, 8.3 · 10−17. The error bound
5.6 ·10−28 in the last case is for the exact x(5). The computed x(5) is affected by roundoff error of about 10−16.

1.8 Newton-Kantorovich theorem

In Theorem 5 we used the convergence of order 1 for the simplified Newton method. One can prove a sharper result using
the convergence of order 2 for the Newton method:

Theorem 6 (Newton-Kantorovich). Assume that for
∥∥x− x(0)

∥∥
∞
≤ R

• the functions f (x), ∂ fi
∂x j

(x), ∂ 2 fi
∂x j∂xk

are continuous

• we have bounds
∣∣∣ ∂ 2 fi

∂x j∂xk
(x)
∣∣∣≤ βi jk

Let A := f ′(x(0)) and let

δ :=
∥∥∥A−1 f (x(0))

∥∥∥
∞

, Bi j :=
n

∑
k=1

βi jk, M :=
∥∥abs(A−1)B

∥∥
∞
, r :=

1−
√

1−2δM
M

=
2δ

1+
√

1−2δM
(18)

If δ ≤ 1
2 M−1 and R≥ r

• the problem f (x∗) =~0 has a unique solution x∗ in the region
∥∥x− x(0)

∥∥
∞
≤ r

• for x(1) := x(0)−A−1 f (x(0)) we have
∥∥∥x∗− x(1)

∥∥∥
∞

≤ Mδ 2

(1−δM)+
√

1−2δM

• the Newton method starting with x(0) converges to x∗

Example 1: For f (x) =
[

x1 + sin(x1 + x2)− 1
2

x2 + cos(x1− x2)−1

]
with x(0) =

[
0
0

]
we get δ = 1

4 and 1
2 M−1 = 1

8 , so we cannot use Theo-

rem 6. But with x(0) =
[ 1

4
0

]
we have δ ≤ 1

2 M−1 and we can use the theorem. If we modify the program from above to use

the a-posteriori bound from the Newton-Kantorovich theorem we get for x(k), k = 2, . . . ,5 the bounds 9.4 ·10−4, 2.7 ·10−7,

9
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2.7 ·10−14, 2.8 ·10−28. The actual errors were 4 ·10−4, 1.3 ·10−7, 1.3 ·10−14, 8.3 ·10−17 (this last value affected by roundoff
error).

Example 2: Find a zero of f (x) =
[

2x1− x2− x1x2− 1
2

2x2 + x1(1− x2
2)

]
in the square [−1

2 ,
1
2 ]× [−1

2 ,
1
2 ]. We find the Jacobian J(x), its

partial derivatives
[

∂

∂x1
Ji j,

∂

∂x2
Ji j

]
and bounds

∣∣∣ ∂

∂x1
Ji j

∣∣∣+ ∣∣∣ ∂

∂x2
Ji j

∣∣∣≤ Bi j

J(x) =
[

2− x2, −1− x1
1− x2

2, 2−2x1x2

]
,

[
[0,−1] [−1,0]
[0,−2x2] [−2x2,−2x1]

]
, B =

[
1 1
1 2

]

We try x(0) =
[

0
0

]
: We have R = 1

2 and obtain f (x(0)) =
[
−.5

0

]
, A := f ′(x(0)) =

[
2 −1
1 2

]
, A−1 =

[
.4 .2
−.2 .4

]
and

d =−A−1 f (x(0)) =
[

.2
−.1

]
, δ = ‖d‖

∞
= .2. Hence

abs(A−1)B =

[
.4 .2
.2 .4

][
1 1
1 2

]
=

[
.6 .8
.6 1

]
, M :=

∥∥∥∥[ .6 .8
.6 1

]∥∥∥∥
∞

= 1.6

Here δ = .2≤ 1
2 M−1 = .3125 and R≥ r = .25 so we can use the Newton-Kantorovich theorem (we cannot use Theorem 5

since δ = .2 > 1
4 M−1 = .15625). We obtain that there is a unique solution in the square

∥∥x− x(0)
∥∥

∞
≤ r, i.e., [−.25, .25]×

[−.25, .25]. For x(1) = x(0)+ d =

[
.2
−.1

]
we obtain the bound

∥∥x(1)− x∗
∥∥

∞
≤ Mδ 2

(1−δM)+
√

1−2δM
= .05, i.e., the solution is

actually in the square [.15, .25]× [−.15×−.05].

f = @(x) [ 2*x(1)-x(2)-x(1)*x(2)-.5 ; 2*x(2)+x(1)*(1-x(2)^2) ];
fp = @(x)[ 2-x(2) , -1-x(1) ; 1-x(2)^2 , 2-2*x(1)*x(2) ];
B = [1 1;1 2]; % from bounds beta_{ijk} for 2nd derivatives
xmin = [-.5;-.5]; xmax = [.5;.5]; % rectangle where bounds hold: xmin(j) <= x(j) <= xmax(j)

x = [0;0]; % initial guess
for i=1:4
b = f(x); A = fp(x); Ai = inv(A);
d = -Ai*b; delta = norm(d,Inf);
xnew = x + d;
fprintf(’x = [%g,%g]\n’,xnew);
M = norm(abs(Ai)*B,Inf);
if delta <= 1/(2*M) % condition for delta in Newton-Kantorovich Theorem
H = delta*M;
r = 2*delta/(1+sqrt(1-2*H));
if all(x-r>=xmin) && all(x+r<=xmax) % check condition for r in Theorem
e = M*delta^2/(1-H+sqrt(1-2*H)); % a-posteriori error bound
fprintf(’ inf-norm error <= %g\n’,e)

end
end
x = xnew;

end

This prints

x = [0.2,-0.1]
inf-norm error <= 0.05

x = [0.192982,-0.095614]
inf-norm error <= 3.76594e-05

x = [0.192973,-0.0956046]

10
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inf-norm error <= 6.68672e-11
x = [0.192973,-0.0956046]

inf-norm error <= 6.3505e-22

The actual errors
∥∥x(k)− x∗

∥∥
∞

for k = 1, . . . ,4 are 7 · 10−3, 9.4 · 10−6, 2.8 · 10−11, 3 · 10−17 (the last value is affected by
roundoff error)

Summary:

• find bounds
∣∣∣∣ ∂ 2 fi

∂x j∂xk
(x)
∣∣∣∣≤ βi jk in a region D where you suspect a solution to be

• pick an initial guess x(0) in D

• perform one Newton step: d :=− f ′(x(0))−1 f (x(0), x(1) := x(0)+d

• with M, r from (18): if ‖d‖
∞
≤ 1

2 M−1 and the points with
∥∥x− x(0)

∥∥
∞
≤ r are in D

there is a unique solution x∗ in the region
∥∥x− x(0)

∥∥
∞
≤ r

we have an a-posteriori bound
∥∥x∗− x(1)

∥∥
∞
≤ ε

• if the conditions in the box do not hold: try it again for x(1),x(2), . . . in place of x(0) .
if x(k) does not seem to converge: you need a better initial guess x(0)
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