1 Fixed Point Iteration and Contraction Mapping Theorem

Notation: For two sets A, B we write $A \subset B$ iff $x \in A \implies x \in B$. So $A \subset A$ is true. Some people use the notation " \subseteq " instead.

1.1 Introduction

Consider a function y = g(x) where $x, y \in \mathbb{R}^n$:

$$\begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} g_1(x_1, \dots, x_n) \\ \vdots \\ g_n(x_1, \dots, x_n) \end{bmatrix}$$

We assume that g(x) is defined for $x \in D$ where D is a subset of \mathbb{R}^n .

The goal is to find a solution x^* of the **fixed point equation**

$$g(x) = x$$
.

A method to find x^* is the **fixed point iteration**: Pick an initial guess $x^{(0)} \in D$ and define for k = 0, 1, 2, ...

$$x^{(k+1)} := g(x^{(k)})$$

Note that this may not converge. But if the sequence $x^{(k)}$ converges, and the function g is continuous, the limit x^* must be a solution of the fixed point equation.

1.2 Contraction Mapping Theorem

The following theorem is called Contraction Mapping Theorem or Banach Fixed Point Theorem.

Theorem 1. Consider a set $D \subset \mathbb{R}^n$ and a function $g: D \to \mathbb{R}^n$. Assume

- 1. D is closed (i.e., it contains all limit points of sequences in D)
- **2.** $x \in D \implies g(x) \in D$
- **3.** The mapping g is a contraction on D: There exists q < 1 such that

$$\forall x, y \in D:$$
 $||g(x) - g(y)|| \le q ||x - y||$ (1)

Then

- **1.** there exists a unique $x^* \in D$ with $g(x^*) = x^*$
- **2.** for any $x^{(0)} \in D$ the fixed point iterates given by $x^{(k+1)} := g(x^{(k)})$ converge to x^* as $k \to \infty$
- 3. $x^{(k)}$ satisfies the **a-priori error estimate**

$$||x^{(k)} - x^*|| \le \frac{q^k}{1 - q} ||x^{(1)} - x^{(0)}||$$
 (2)

and the a-posteriori error estimate

$$||x^{(k)} - x^*|| \le \frac{q}{1 - q} ||x^{(k)} - x^{(k-1)}||$$
 (3)

Proof. Pick $x^{(0)} \in D$ and define $x^{(k)}$ for k = 1, 2, ... by $x^{(k)} := g(x^{(k-1)})$. We have from the contraction property (1)

$$||x^{(k+1)} - x^{(k)}|| = ||g(x^{(k)}) - g(x^{(k-1)})|| \le q||x^{(k)} - x^{(k-1)}||$$

$$(4)$$

and hence

$$||x^{(k+1)} - x^{(k)}|| \le q^k ||x^{(1)} - x^{(0)}||$$
(5)

Let $d := ||x^{(1)} - x^{(0)}||$. We have from the triangle inequality and (5)

$$||x^{(k)} - x^{(k+\ell)}|| \le ||x^{(k)} - x^{(k+1)}|| + \dots + ||x^{(k+\ell-1)} - x^{(k+\ell)}||$$

$$\le q^k d + \dots + q^{k+\ell-1} d = q^k d (1 + q + \dots + q^{\ell-1})$$

$$||x^{(k)} - x^{(k+\ell)}|| \le q^k d \frac{1}{1 - q}$$
(6)

using the sum of the geometric series $\sum_{j=0}^{\ell-1} q^j \leq \sum_{j=0}^{\infty} q^j = 1/(1-q)$. Note that (6) shows that the sequence $x^{(k)}$ is a *Cauchy sequence*. Therefore it must converge to a limit $x^* \in \mathbb{R}^n$ (since the space \mathbb{R}^n is complete). As D is closed, we must have $x^* \in D$.

We need to show that $x^* = g(x^*)$: We have $x^{(k+1)} = g(x^{(k)})$, hence

$$\lim_{k \to \infty} x^{(k+1)} = \lim_{k \to \infty} g(x^{(k)})$$

The limit of the left hand side is x^* . Note that because of (1) the function g must be continuous. Therefore

$$\lim_{k\to\infty} g(x^{(k)}) = g(\lim_{k\to\infty} x^{(k)}) = g(x^*).$$

Next we need to show that the fixed point x^* is unique. Assume that we have fixed points $x^* = g(x^*)$ and $y^* = g(y^*)$. Then we obtain using the contraction property (1)

$$||x^* - y^*|| = ||g(x^*) - g(y^*)|| \le q||x^* - y^*||$$

implying $(1-q)||x^*-y^*|| \le 0$ and therefore $||x^*-y^*|| = 0$, i.e., $x^* = y^*$.

The a-priori estimate (2) follows from (6) by letting ℓ tend to infinity. For the a-posteriori estimate use (2) with k=1 for $\tilde{x}^{(0)} := x^{(k)}, \tilde{x}^{(1)} = x^{(k+1)}$.

1.3 Proving the Contraction Property

The contraction property is related to the Jacobian g'(x) which is an $n \times n$ matrix for each point $x \in D$. If the matrix norm satisfies $||g'(x)|| \le q < 1$ then the mapping g must be a contraction:

Theorem 2. Assume the set $D \subset \mathbb{R}^n$ is convex and the function $g: D \to \mathbb{R}^n$ has continuous partial derivatives $\frac{\partial g_j}{\partial k}$ in D. If for q < 1 the matrix norm of the Jacobian satisfies

$$\forall x \in D: \qquad \|g'(x)\| \le q \tag{7}$$

the mapping g is a contraction in D and satisfies (1).

Proof. Let $x, y \in D$. Then the points on the straight line from x to y are given by x + t(y - x) for $t \in [0, 1]$. As D is convex all these points are contained in D. Let G(t) := g(x + t(y - x)), then by the chain rule we have G'(t) = g'(x + t(y - x))(y - x) and

$$g(y) - g(x) = G(1) - G(0) = \int_0^1 G'(t)dt = \int_0^1 g'(x + t(y - x))(y - x)dt$$

As an integral of a continuous function is a limit of Riemann sums the triangle inequality implies $\left\| \int_a^b F(t) dt \right\| \le \int_a^b \|F(t)\| dt$:

$$||g(y) - g(x)|| \le \int_0^1 ||g'(x + t(y - x))(y - x)dt|| \le \int_0^1 \underbrace{||g'(x + t(y - x))||}_{\le q} ||y - x|| dt \le q ||y - x||$$

This is usually the easiest method to prove that a given mapping g is a contraction, see the examples in sections 1.5, 1.6.

1.4 A-priori and a-posteriori error estimates

The error estimates (2), (3) are useful for figuring out how many iterations we need. For this we need to know the contraction constant q (typically we get this from (7)).

A-priori estimate: For an initial guess $x^{(0)}$ we can find $x^{(1)}$. Without computing anything else we then have the error bound $\|x^{(k)} - x^*\| \le \frac{q^k}{1-q} \|x^{(1)} - x^{(0)}\|$ for all future iterates $x^{(k)}$, before ("a-priori") we actually compute them. We can e.g. use this to find a value k such that $\|x^{(k)} - x^*\|$ is below a given tolerance.

A-posteriori estimate: After we have actually computed $x^{(k)}$ ("a-posteriori") we would like to know where the true solution x^* is located. Let

$$\delta_k := \frac{q}{1-a} \|x^{(k)} - x^{(k-1)}\|, \qquad D_k := \{x \mid \|x - x^{(k)}\| \le \delta_k\}$$

The a-posteriori estimate states that x^* is contained in the set D_k . Note:

- the "radius" δ_k of D_k decreases at least by a factor of q with each iteration: $\delta_{k+1} \leq q \delta_k$
- the sets D_k are nested: $D_1 \supset D_2 \supset D_3 \supset \cdots$

To show $D_{k+1} \subset D_k$ assume $x \in D_{k+1}$. Then

$$||x - x^{(k)}|| \le \underbrace{||x - x^{(k+1)}||}_{\le \delta_{k+1}} + ||x^{(k+1)} - x^{(k)}|| \le \left(\frac{q}{1 - q} + 1\right) ||x^{(k+1)} - x^{(k)}|| \le \frac{1}{1 - q} q ||x^{(k)} - x^{(k-1)}|| = \delta_k$$
 (8)

If we use the ∞ -norm: $\|x^{(k)} - x^*\|_{\infty} \le \delta_k$ means that for each component x_i^* we have a bracket

$$x_{j}^{*} \in [x_{j}^{(k)} - \delta_{k}, x_{j}^{(k)} + \delta_{k}],$$

i.e., the set D_k is a square/cube/hypercube with side length $2\delta_k$ centered in $x^{(k)}$.

1.5 Example

We want to find x_1, x_2 satisfying the nonlinear system

$$10x_1 + x_2 + \sin(x_1 + x_2) = 1 \tag{9}$$

$$x_1 + 10x_2 - \cos(x_1 - x_2) = 2 (10)$$

We first have to rewrite this system in fixed point form x = g(x). If we solve the first equation for x_1 in $10x_1$, and we solve the second equation for x_2 in $10x_2$ we get the following system

$$x_1 = \frac{1}{10} \left[1 - x_2 - \sin(x_1 + x_2) \right] \tag{11}$$

$$x_2 = \frac{1}{10} \left[2 + x_1 + \cos(x_1 - x_2) \right] \tag{12}$$

This is in fixed point form x = g(x) with $g(x) = \frac{1}{10} \begin{bmatrix} 1 - x_2 - \sin(x_1 + x_2) \\ 2 + x_1 + \cos(x_1 - x_2) \end{bmatrix}$.

First we want to show that g is a contraction using Theorem 2. Therefore we first have to find the Jacobian g'(x):

$$g'(x) = \frac{1}{10} \begin{bmatrix} -\cos(x_1 + x_2) & -1 - \cos(x_1 + x_2) \\ 1 - \sin(x_1 - x_2) & \sin(x_1 - x_2) \end{bmatrix}$$

Let A := g'(x). Let us use the ∞ -norm. We need to find an upper bound for $||A||_{\infty} = \max\{|a_{11}| + |a_{12}|, |a_{21}| + |a_{22}|\}$. We obtain for any $x_1, x_2 \in \mathbb{R}$

$$|a_{11}| = \frac{1}{10} \left| -\cos(x_1 + x_2) \right| \le \frac{1}{10}, \qquad |a_{12}| = \frac{1}{10} \left| -1 - \cos(x_1 + x_2) \right| \le \frac{1}{10} (1+1)$$

$$|a_{21}| = \frac{1}{10} \left| 1 - \sin(x_1 - x_2) \right| \le \frac{1}{10} (1+1), \qquad |a_{22}| \le \frac{1}{10} \left| \sin(x_1 - x_2) \right| \le \frac{1}{10}$$

Therefore for any $x \in \mathbb{R}^2$ we have

$$||g'(x)||_{\infty} \le \frac{3}{10} = q < 1.$$

By Theorem 2 we therefore obtain that g is a contraction for all of \mathbb{R}^2 .

We now want to use Theorem 1. We need to pick a set D such that the three assumptions of the theorem are satisfied. We consider two choices:

First choice $D = \mathbb{R}^2$: We can use the set $D = \mathbb{R}^2$. This set is closed. For any $x \in \mathbb{R}^2$ we certainly have that $g(x) \in \mathbb{R}^2$. We have also shown that g is a contraction for all of \mathbb{R}^2 . Therefore we obtain from Theorem 1 that the nonlinear system g(x) = x has exactly one solution x^* in all of \mathbb{R}^2 .

Second choice $D = [-1,1] \times [-1,1]$: We can use for D the square with $-1 \le x_1 \le 1$ and $-1 \le x_2 \le 1$. This is a closed set (the boundary of the square is included). We now have to check that for $x \in D$ we have that $y = g(x) \in D$: We have using $-1 < \sin \alpha < 1, -1 < \cos \alpha < 1$

$$-\frac{2}{10} = \frac{1}{10} (1 - 1 - 1) \le y_1 = \frac{1}{10} [1 - x_2 - \sin(x_1 + x_2)] \le \frac{1}{10} (1 + 1 + 1) = \frac{3}{10}$$
$$0 = \frac{1}{10} (2 - 1 - 1) \le y_2 = \frac{1}{10} [2 + x_1 + \cos(x_1 - x_2)] \le \frac{1}{10} (2 + 1 + 1) = \frac{4}{10}$$

therefore $y \in D$ and the second assumption of the theorem is satisfied. We already showed that g is a contraction for all of \mathbb{R}^2 , so the third assumption definitely holds for $x, y \in D$. We can now apply Theorem 1 and obtain that the nonlinear system has exactly one solution x^* which is located in the square $D = [-1, 1] \times [-1, 1]$.

Numerical Computation: We start with the initial guess $x^{(0)} = (0,0)^{\top}$. After each iteration we find δ_k and the square D_k containing x^* :

k	$x^{(k)}$	δ_k	D_k
1	$(.1, .3)^{\top}$	$1.3 \cdot 10^{-1}$	$[02857, .2286] \times [.1714, .4286]$
2	$(.03106, .3080)^{\top}$	$3.0 \cdot 10^{-2}$	$[.00151, .06060] \times [.2785, .3376]$
3	$(.03594, .2993)^{\top}$	$3.7 \cdot 10^{-3}$	$[.03221, .03967] \times [.2956, .3030]$
4	$(.03717, .3001)^{\top}$	$5.3 \cdot 10^{-4}$	$[.03664, .03770] \times [.2996, .3007]$
5	$(.03689, .3003)^{\top}$	$1.2 \cdot 10^{-4}$	$[.03677, .03701] \times [.3001, .3004]$

Note: (i) δ_k decreases at least by a factor of q = 0.3 with each iteration.

(ii) The sets D_k are nested: $D_1 \supset D_2 \supset D_3 \supset \cdots$

1.6 Using the Fixed Point Theorem without the Assumption $g(D) \subset D$

The tricky part in using the contraction mapping theorem is to find a set *D* for which *both* the 2nd and 3rd assumption of the fixed point theorem hold:

- $x \in D \implies g(x) \in D$
- g is a contraction on D

Typically we can prove that $||g'(x)|| \le q < 1$ for x in some convex region \tilde{D} . We suspect that there is a solution x^* of the fixed point equation in \tilde{D} . But it may not be true that $g(x) \in \tilde{D}$ for all $x \in \tilde{D}$.

In this case we may be able to prove a result by computing a few iterates $x^{(k)}$: Start with k=0 and an initial guess $x^{(0)} \in \tilde{D}$. Then repeat

- let k := k + 1 and compute $x^{(k)} := g(x^{(k-1)})$
- compute $\delta_k := \frac{q}{1-q} \|x^{(k)} x^{(k-1)}\|$, let $D_k := \{x \mid \|x x^{(k)}\| \le \delta_k\}$

until either $D_k \subset \tilde{D}$ or $x^{(k)} \notin \tilde{D}$.

If the iterates exit from the set \tilde{D} we cannot conclude anything. But as long as the points $x^{(k)}$ stay inside \tilde{D} we have $\delta_{k+1} \leq q \delta_k$ and $D_{k+1} \subset D_k$. So we expect that for some k the condition $D_k \subset \tilde{D}$ will be satisfied (if $x^{(k)}$ converges to a limit in the interior of \tilde{D} the loop must terminate with $D_k \subset \tilde{D}$; but in general it is possible that the loop never terminates). If the loop does terminate with $D_k \subset \tilde{D}$ for k = K we have the following result:

Theorem 3. Let $\tilde{D} \subset \mathbb{R}^n$ and assume that the function $g \colon \tilde{D} \to \mathbb{R}^n$ satisfies for q < 1

$$\forall x, y \in \tilde{D}$$
: $||g(x) - g(y)|| \le q ||x - y||$

Let $x^{(0)} \in \tilde{D}$ and define for k = 0, 1, 2, ...

$$x^{(k+1)} := g(x^{(k)}), \qquad \delta_k := \frac{q}{1-q} \|x^{(k)} - x^{(k-1)}\|, \qquad D_k := \{x \mid \|x - x^{(k)}\| \le \delta_k\}$$
(13)

If for some K we have $x^{(K-1)} \in \tilde{D}$ *and* $D_K \subset \tilde{D}$ *there holds*

- the equation g(x) = x has a unique solution x^* in \tilde{D}
- this solution satisfies $x^* \in D_k$ for all $k \ge K$

Proof. Let $x \in D_K$. We want to show that $g(x) \in D_K$: As $D_K \subset \tilde{D}$ the contraction property gives using the definition of D_k and δ_k

$$\|g(x) - x^{(K)}\| \le q\|x - x^{(K-1)}\| \le q\|x - x^{(K)}\| + q\|x^{(K)} - x^{(K-1)}\| \le q\delta_K + (1-q)\delta_K = \delta_K$$

As D_K is closed and $D_K \subset \tilde{D}$ the set $D := D_K$ satisfies all three assumptions of the fixed point theorem 1. Hence there is a unique solution $x^* \in D$. The a-posteriori estimate (3) states that $x^* \in D_k$ for all iterates $x^{(k)}$ with $k \geq K$. Assume that there is another fixed point $y^* \in \tilde{D}$ with $g(y^*) = y^*$. Then

$$||y^* - x^*|| = ||g(y^*) - g(x^*)|| \le q ||y^* - x^*||$$

As q < 1 we must have $||y^* - x^*|| = 0$.

Summary:

- Find a convex set \tilde{D} for which you suspect $x^* \in \tilde{D}$ and where you can show $||g'(x)|| \le q < 1$
- Pick $x^{(0)} \in \tilde{D}$ and perform the fixed point iteration: for each iteration:
 - find $x^{(k)}$ and D_k
 - if $x^{(k)} \notin \tilde{D}$: stop (we can't conclude anything)
 - if $D_k \subset \tilde{D}$: success: there is a unique solution $x^* \in \tilde{D}$, and there holds $x^* \in D_k$ for this and all following iterations

Example: Let $g(x) := \frac{1}{3} \begin{bmatrix} x_1 - x_1 x_2 + 1 \\ x_2 + x_1 x_2^2 + 1 \end{bmatrix}$. Then the Jacobian is $g'(x) = \frac{1}{3} \begin{bmatrix} 1 - x_2 & -x_1 \\ x_2^2 & 1 + 2x_1 x_2 \end{bmatrix}$. Let us try to use $\tilde{D} = [0, a] \times [0, a]$ with $a \le 1$ and the ∞ -norm. We then obtain for $x \in \tilde{D}$ that

$$||g'(x)||_{\infty} \le \frac{1}{3} \max\{1+a, a^2+1+2a^2\}$$

For a=1 we get $\|g'(x)\|_{\infty} \leq \frac{4}{3}$ which is too large. So we try a=0.6 which gives $\|g'(x)\|_{\infty} \leq \frac{2.08}{3} =: q < 1$. Therefore g is a contraction on $\tilde{D} = [0,.6] \times [0,.6]$. Note that $g(\begin{bmatrix} 0.6 \\ 0.6 \end{bmatrix}) = \begin{bmatrix} 0.41333 \\ 0.60533 \end{bmatrix} \notin \tilde{D}$, so \tilde{D} does *not* satisfy all three assumptions of Theorem 1.

For
$$x^{(0)} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 we obtain
$$x^{(1)} = (.33333, .33333)^{\top} \in \tilde{D}, \qquad D_1 = [-0.42029, 1.08696] \times [-0.42029, 1.08696] \not\subset \tilde{D}$$

$$x^{(2)} = (.40741, .45679)^{\top} \in \tilde{D}, \qquad D_2 = [0.12829, 0.68653] \times [0.17767, 0.73591] \not\subset \tilde{D}$$

$$x^{(3)} = (.40710, .51393)^{\top} \in \tilde{D}, \qquad D_3 = [0.27791, 0.53629] \times [0.38474, 0.64313] \not\subset \tilde{D}$$

$$x^{(4)} = (.39929, .54049)^{\top} \in \tilde{D}, \qquad D_4 = [0.33926, 0.45933] \times [0.48045, 0.60052] \not\subset \tilde{D}$$

$$x^{(5)} = (.39449, .55238)^{\top} \in \tilde{D}, \qquad D_5 = [0.36761, 0.42138] \times [0.52549, 0.57926] \subset \tilde{D}$$

Therefore we can conclude from Theorem 3 that there exists a unique solution $x^* \in \tilde{D} = [0,0.6] \times [0,0.6]$. This solution x^* is located in the smaller square D_5 . For k = 5,6,7,... we obtain $x^* \in D_k$ where D_k is a square with side length $2\delta_k$. As $\delta_k \leq q^{k-5}\delta_5 \leq \left(\frac{2.08}{3}\right)^{k-5}0.027$ we can obtain arbitrarily small squares containing the solution if we choose k sufficiently large.

1.7 How to rewrite a nonlinear system in fixed point form: simplified Newton method

For a given nonlinear system $f(x) = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$ there are several ways to rewrite it in the form g(x) = x. How can we do this so that the function g is a contraction?

First consider the **Newton method**: For a current guess $x^{(k)}$ we solve the linear system

$$f'(x^{(k)})d = -f(x^{(k)}) \tag{14}$$

and let $x^{(k+1)} := x^{(k)} + d = x^{(k)} - f'(x^{(k)})^{-1} f(x^{(k)})$. Therefore we have the iteration function $g(x) = x - f'(x)^{-1} f(x)$.

The Newton method is expensive: For each step we have to evaluate $f(x^{(k)})$ and $f'(x^{(k)})$ which are $n+n^2$ function evaluations. Then we have to solve an $n \times n$ linear system which costs $\frac{n^3}{3} + O(n^2)$ operations. In particular for large n this may be too much work per step.

We can "cheat" as follows: instead of solving (14) with the new Jacobian matrix $f'(x^{(k)})$ we keep reusing the first Jacobian $A := f'(x^{(0)})$ and solve

$$Ad = -f(x^{(k)}) \tag{15}$$

and let $x^{(k+1)} := x^{(k)} + d = x^{(k)} - A^{-1}f(x^{(k)})$. Therefore we have now the iteration function $g(x) = x - A^{-1}f(x)$. This "**simplified Newton method**" is much cheaper: We only evaluate the initial Jacobian matrix $A := f'(x^{(0)})$ and compute its LU decomposition. For each step we can solve the linear system (15) using forward and back substitution. Hence we have for each step only n function evaluations and n^2 operations to solve the linear system.

The simplified Newton method is still locally convergent. But it only converges with order 1 (whereas the Newton method converges with order 2). This is shown in the following theorem:

Theorem 4. Assume we have $f(x^*) = 0$ where $f'(x^*)$ is nonsingular and the partial derivatives $\frac{\partial f_i}{\partial x_j}$ and $\frac{\partial^2 f_i}{\partial x_j \partial x_k}$ are continuous near x^* . Then the simplified Newton method will converge if $x^{(0)}$ is sufficiently close to a solution x^* .

Proof. Assume we have a solution x^* , and for $\|x-x^{(0)}\|_{\infty} \le \varepsilon$ we have bounds $\left|\frac{\partial^2 f_i(x)}{\partial x_j \partial x_k}\right| \le M_{ijk}$ and $\|f'(x)^{-1}\|_{\infty} \le c_1$. Let $c_2 := \max_i \sum_{j,k} M_{ijk}$. Then $\|f'(x) - f'(y)\|_{\infty} \le c_2 \|x - y\|_{\infty}$. Now assume $\|x - x^*\| \le \delta$ and $\|x^{(0)} - x^*\| \le \delta$ (we will define δ in a moment). Then

$$g'(x) = I - A^{-1} f'(x) = A^{-1} \left(f'(x^{(0)}) - f'(x) \right)$$

$$\|g'(x)\|_{\infty} \le \|f'(x^{(0)})\| \|f'(x^{(0)}) - f'(x)\| \le c_1 c_2 \underbrace{\|x^{(0)} - x\|}_{\|x^{(0)} - x^*\| + \|x^* - x\|} \le c_1 c_2 2\delta$$

Now we can define $\delta > 0$ such that $\delta \le \varepsilon$ and $c_1c_22\delta \le q < 1$. Hence for $D := \{x \mid ||x-x^*|| \le \delta\}$ we have that D is closed and that g is a contraction on D with q < 1. We also have for $x \in D$ that $||g(x) - x^*|| = ||g(x) - g(x^*)|| \le q ||x - x^*|| \le q\delta \le \delta$, hence $g(x) \in D$.

We can now use the contraction mapping theorem to show that there exists a unique solution in a region around our initial guess $x^{(0)}$.

We assume: Near our initial guess $x^{(0)}$ we have bounds β_{ijk} for the 2nd partial derivatives:

$$\left| \frac{\partial^2 f_i(x)}{\partial x_i \partial x_k} \right| \le \beta_{ijk} \quad \text{for } ||x - x^{(0)}||_{\infty} \le R$$

Then we have for x with $||x - x^{(0)}||_{\infty} \le R$

$$\left| \frac{\partial f_{i}}{\partial x_{j}}(x^{(0)}) - \frac{\partial f_{i}}{\partial x_{j}}(x) \right| \leq \underbrace{\left(\sum_{k=1}^{n} \beta_{ijk} \right)}_{=:B_{ij}} \left\| x^{(0)} - x \right\|_{\infty}$$

$$g'(x) = A^{-1} \left(f'(x^{(0)}) - f'(x) \right)$$

$$\left\| g'(x) \right\|_{\infty} \leq \underbrace{\left\| abs(A^{-1})B \right\|_{\infty}}_{=:M} \cdot \left\| x^{(0)} - x \right\|_{\infty}$$

$$(16)$$

where $abs(A^{-1}) \in \mathbb{R}^{n \times n}$ has entries which are the absolute values of the entries of A^{-1} and $B \in \mathbb{R}^{n \times n}$ has entries B_{ij} . Here **We perform one Newton step:** (the first step of the simplified Newton method is an actual Newton step)

$$d := -A_0^{-1} f(x^{(0)}), \qquad x^{(1)} := x^{(0)} + d, \qquad \delta := ||d||_{\infty}$$

We want to use Theorem 3 on the region $\tilde{D}_r := \{x \mid ||x - x^{(0)}||_{\infty} \le r\}$ with a suitable $r \le R$.

We need to choose $r \in (0, R]$ so that the assumptions of the theorem are satisfied:

- g' is a contraction for $x \in \tilde{D}_r$: Because of (16) we need q := Mr < 1
- the "a-posteriori region" $D_1 = \left\{ x \mid \left\| x x^{(1)} \right\|_{\infty} \leq \frac{q}{1-q} \left\| x^{(1)} x^{(0)} \right\|_{\infty} \right\}$ is a subset of \tilde{D}_r . This is satisfied if

$$\|x - x^{(0)}\|_{\infty} \le \|x - x^{(1)}\|_{\infty} + \|x^{(1)} - x^{(0)}\|_{\infty} \le \frac{q}{1 - q} \delta + \delta \stackrel{!}{\le} r$$
i.e.,
$$\frac{\delta}{1 - q} \stackrel{!}{\le} r$$
(17)

With q := Mr < 1 the condition (17) can be written as

$$\delta \stackrel{!}{\leq} r(1 - Mr) =: F(r)$$

Note that the quadratic function F(r) = r(1-Mr) is zero at r = 0 and $r = M^{-1}$ and has at $\frac{1}{2}M^{-1}$ the maximum $F(\frac{1}{2}M^{-1}) = \frac{1}{4}M^{-1}$. Hence we need $\delta \leq \frac{1}{4}M^{-1}$. The smallest r with $F(r) \geq \delta$ is $r_1 := \frac{1}{2}M^{-1}\left(1 - \sqrt{1 - 4M\delta}\right)$. We have shown:

Theorem 5. Assume that for $||x-x^{(0)}||_{\infty} \leq R$

- the functions f(x), $\frac{\partial f_i}{\partial x_i}(x)$, $\frac{\partial^2 f_i}{\partial x_i \partial x_k}$ are continuous
- we have bounds $\left| \frac{\partial^2 f_i}{\partial x_j \partial x_k}(x) \right| \leq \beta_{ijk}$

Let $A := f'(x^{(0)})$ *and let*

$$\delta := \left\| A^{-1} f(x^{(0)}) \right\|_{\infty}, \qquad B_{ij} := \sum_{k=1}^{n} \beta_{ijk}, \qquad M := \left\| \operatorname{abs}(A^{-1}) B \right\|_{\infty}, \qquad r_{1,2} := \frac{1 \mp \sqrt{1 - 4M\delta}}{2M}$$

If
$$\delta \leq \frac{1}{4}M^{-1}$$
 and $R \geq r_1$

• the problem $f(x^*) = \vec{0}$ has a unique solution x^* in the region $||x - x^{(0)}||_{\infty} \le \min\{r_2, R\}$

•
$$for \ x^{(1)} := x^{(0)} - A^{-1} f(x^{(0)}) \ we \ have \ \left\| x^* - x^{(1)} \right\|_{\infty} \le \frac{\delta}{(Mr_1)^{-1} - 1} = \frac{4M\delta^2}{(1 - 4M\delta) + \sqrt{1 - 4M\delta}}$$

• the simplified Newton method starting with $x^{(0)}$ converges to x^* .

Note that we do not assume that the problem $f(x) = \vec{0}$ has a solution.

Example 1: Find a zero of
$$f(x) = \begin{bmatrix} x_1 + \sin(x_1 + x_2) - \frac{1}{2} \\ x_2 + \cos(x_1 - x_2) - 1 \end{bmatrix}$$
. We have $f'(x) = \begin{bmatrix} 1 + \cos(x_1 + x_2), & \cos(x_1 + x_2) \\ -\sin(x_1 - x_2), & 1 + \sin(x_1 - x_2) \end{bmatrix}$.

Note that all second derivatives $\frac{\partial^2 f_i}{\partial x_j \partial x_k}(x)$ are of the form $\pm \sin(\cdots)$ or $\pm \cos(\cdots)$, hence $\beta_{ijk} = 1$ for all i, j, k where R is arbitrarily large. We have $B_{ij} = \sum_{k=1}^{2} \beta_{ijk} = 2$ for all i, j.

First try
$$x^{(0)} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
: Then $f(x^{(0)}) = \begin{bmatrix} -.5 \\ 0 \end{bmatrix}$, $A := f'(x^{(0)}) = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}$, $A^{-1} = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \\ 0 & 1 \end{bmatrix}$ and $d = -A^{-1}f(x^{(0)}) = \begin{bmatrix} \frac{1}{4} \\ 0 \end{bmatrix}$, $\delta = \|d\|_{\infty} = \frac{1}{4}$. Hence

$$abs(A^{-1})B = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}, \qquad M := \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} \Big|_{\infty} = 4$$

But here $\delta = \frac{1}{4}$ is greater than $\frac{1}{4}M^{-1} = \frac{1}{16}$, so we cannot use the theorem. We need an initial guess closer to the solution.

The Newton step starting at $x^{(0)} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ gives $x^{(1)} = \begin{bmatrix} \frac{1}{4} \\ 0 \end{bmatrix}$.

Second try
$$x^{(0)} = \begin{bmatrix} \frac{1}{4} \\ 0 \end{bmatrix}$$
: Then $f(x^{(0)}) = \begin{bmatrix} -.002596 \\ -.031088 \end{bmatrix}$, $A := f'(x^{(0)}) = \begin{bmatrix} 1.9689 & .96891 \\ -.2474 & 1.2474 \end{bmatrix}$, $A^{-1} = \begin{bmatrix} .46273 & -.35942 \\ .091776 & .73038 \end{bmatrix}$ and $d = A^{-1}f(x^{(0)}) = \begin{bmatrix} -.0099723 \\ .022944 \end{bmatrix}$, $\delta = ||d||_{\infty} = .022944$. Hence

$$abs(A^{-1})B = \begin{bmatrix} .46273 & .35942 \\ .091776 & .73038 \end{bmatrix} \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1.6443 & 1.6443 \\ 1.6443 & 1.6443 \end{bmatrix}, \qquad M := \|abs(A^{-1})B\|_{\infty} = 3.2886$$

Now $\delta = .022944$ is less than $\frac{1}{4}M^{-1} = 0.07602$, yielding $r_1 = .024999$, $r_2 = .27908$. Therefore the theorem states that there is a unique solution in the square $[-.0290799, .52908] \times [-.27908, .27908]$ of size $2r_2$, centered in $x^{(0)}$. This solution is actually located in the smaller square $[.237972, 0.242083] \times [0.0208887, 0.0249992]$ of size $2\frac{\delta}{(Mr_1)^{-1}-1}$, centered in $x^{(1)}$.

```
f = @(x) [ x(1) + \sin(x(1) + x(2)) - .5 ; x(2) + \cos(x(1) - x(2)) - 1 ];
fp = @(x) [ 1 + \cos(x(1) + x(2)) , \cos(x(1) + x(2)) ; -\sin(x(1) - x(2)) , 1 + \sin(x(1) - x(2))];
B = [2 \ 2;2 \ 2];
\% from bounds beta_{\{ijk\}} for 2nd derivatives
x = [0:0];
\% initial guess
```

This prints

```
x = [0.25,0]
x = [0.240028,0.022944]
    inf-norm error <= 0.00205526
x = [0.239842,0.0233441]
    inf-norm error <= 5.39279e-07
x = [0.239842,0.0233442]
    inf-norm error <= 5.45924e-14
x = [0.239842,0.0233442]
    inf-norm error <= 5.60471e-28</pre>
```

Note that the actual errors $||x^{(k)} - x^*||_{\infty}$ for k = 2, 3, 4, 5 are $4 \cdot 10^{-4}$, $1.3 \cdot 10^{-7}$, $1.3 \cdot 10^{-14}$, $8.3 \cdot 10^{-17}$. The error bound $5.6 \cdot 10^{-28}$ in the last case is for the exact $x^{(5)}$. The computed $x^{(5)}$ is affected by roundoff error of about 10^{-16} .

1.8 Newton-Kantorovich theorem

In Theorem 5 we used the convergence of order 1 for the simplified Newton method. One can prove a sharper result using the convergence of order 2 for the Newton method:

Theorem 6 (Newton-Kantorovich). Assume that for $||x-x^{(0)}||_{\infty} \le R$

- the functions f(x), $\frac{\partial f_i}{\partial x_i}(x)$, $\frac{\partial^2 f_i}{\partial x_i \partial x_k}$ are continuous
- we have bounds $\left| \frac{\partial^2 f_i}{\partial x_j \partial x_k}(x) \right| \leq \beta_{ijk}$

Let A := $f'(x^{(0)})$ *and let*

$$\delta := \left\| A^{-1} f(x^{(0)}) \right\|_{\infty}, \qquad B_{ij} := \sum_{k=1}^{n} \beta_{ijk}, \qquad M := \left\| \operatorname{abs}(A^{-1}) B \right\|_{\infty}, \qquad r := \frac{1 - \sqrt{1 - 2\delta M}}{M} = \frac{2\delta}{1 + \sqrt{1 - 2\delta M}}$$
(18)

If
$$\delta \leq \frac{1}{2}M^{-1}$$
 and $R \geq r$

- the problem $f(x^*) = \vec{0}$ has a unique solution x^* in the region $||x x^{(0)}||_{\infty} \le r$
- $for \ x^{(1)} := x^{(0)} A^{-1} f(x^{(0)}) \ we \ have \ \left\| x^* x^{(1)} \right\|_{\infty} \le \frac{M \delta^2}{(1 \delta M) + \sqrt{1 2\delta M}}$
- the Newton method starting with $x^{(0)}$ converges to x^*

Example 1: For $f(x) = \begin{bmatrix} x_1 + \sin(x_1 + x_2) - \frac{1}{2} \\ x_2 + \cos(x_1 - x_2) - 1 \end{bmatrix}$ with $x^{(0)} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ we get $\delta = \frac{1}{4}$ and $\frac{1}{2}M^{-1} = \frac{1}{8}$, so we cannot use Theorem 6. But with $x^{(0)} = \begin{bmatrix} \frac{1}{4} \\ 0 \end{bmatrix}$ we have $\delta \leq \frac{1}{2}M^{-1}$ and we can use the theorem. If we modify the program from above to use the a-posteriori bound from the Newton-Kantorovich theorem we get for $x^{(k)}$, $k = 2, \dots, 5$ the bounds $9.4 \cdot 10^{-4}$, $2.7 \cdot 10^{-7}$,

 $2.7 \cdot 10^{-14}$, $2.8 \cdot 10^{-28}$. The actual errors were $4 \cdot 10^{-4}$, $1.3 \cdot 10^{-7}$, $1.3 \cdot 10^{-14}$, $8.3 \cdot 10^{-17}$ (this last value affected by roundoff error).

Example 2: Find a zero of $f(x) = \begin{bmatrix} 2x_1 - x_2 - x_1x_2 - \frac{1}{2} \\ 2x_2 + x_1(1 - x_2^2) \end{bmatrix}$ in the square $[-\frac{1}{2}, \frac{1}{2}] \times [-\frac{1}{2}, \frac{1}{2}]$. We find the Jacobian J(x), its partial derivatives $\left[\frac{\partial}{\partial x_1}J_{ij}, \frac{\partial}{\partial x_2}J_{ij}\right]$ and bounds $\left|\frac{\partial}{\partial x_1}J_{ij}\right| + \left|\frac{\partial}{\partial x_2}J_{ij}\right| \leq B_{ij}$

$$J(x) = \begin{bmatrix} 2 - x_2, & -1 - x_1 \\ 1 - x_2^2, & 2 - 2x_1x_2 \end{bmatrix}, \qquad \begin{bmatrix} [0, -1] & [-1, 0] \\ [0, -2x_2] & [-2x_2, -2x_1] \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$$

We try $x^{(0)} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$: We have $R = \frac{1}{2}$ and obtain $f(x^{(0)}) = \begin{bmatrix} -.5 \\ 0 \end{bmatrix}$, $A := f'(x^{(0)}) = \begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix}$, $A^{-1} = \begin{bmatrix} .4 & .2 \\ -.2 & .4 \end{bmatrix}$ and $d = -A^{-1}f(x^{(0)}) = \begin{bmatrix} .2 \\ -.1 \end{bmatrix}$, $\delta = ||d||_{\infty} = .2$. Hence

$$abs(A^{-1})B = \begin{bmatrix} .4 & .2 \\ .2 & .4 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} .6 & .8 \\ .6 & 1 \end{bmatrix}, \qquad M := \begin{bmatrix} .6 & .8 \\ .6 & 1 \end{bmatrix} \Big|_{\infty} = 1.6$$

Here $\delta = .2 \le \frac{1}{2}M^{-1} = .3125$ and $R \ge r = .25$ so we can use the Newton-Kantorovich theorem (we cannot use Theorem 5 since $\delta = .2 > \frac{1}{4}M^{-1} = .15625$). We obtain that there is a unique solution in the square $||x - x^{(0)}||_{\infty} \le r$, i.e., $[-.25, .25] \times$ [-.25, .25]. For $x^{(1)} = x^{(0)} + d = \begin{bmatrix} .2 \\ -.1 \end{bmatrix}$ we obtain the bound $||x^{(1)} - x^*||_{\infty} \le \frac{M\delta^2}{(1 - \delta M) + \sqrt{1 - 2\delta M}} = .05$, i.e., the solution is actually in the square $[.15, .25] \times [-.15 \times -.05]$.

```
f = Q(x) [2*x(1)-x(2)-x(1)*x(2)-.5; 2*x(2)+x(1)*(1-x(2)^2)];
fp = @(x)[2-x(2), -1-x(1); 1-x(2)^2, 2-2*x(1)*x(2)];
                                         % from bounds beta_{ijk} for 2nd derivatives
B = [1 1;1 2];
                                         % rectangle where bounds hold: xmin(j) \le x(j) \le xmax(j)
xmin = [-.5; -.5]; xmax = [.5; .5];
                                         % initial quess
x = [0;0];
for i=1:4
  b = f(x); A = fp(x); Ai = inv(A);
  d = -Ai*b; delta = norm(d,Inf);
  xnew = x + d;
  fprintf('x = [%g,%g]\n',xnew);
  M = norm(abs(Ai)*B,Inf);
  if delta \ll 1/(2*M)
                                         % condition for delta in Newton-Kantorovich Theorem
    H = delta*M;
    r = 2*delta/(1+sqrt(1-2*H));
    if all(x-r)=xmin) && all(x+r)=xmax) % check condition for r in Theorem
      e = M*delta^2/(1-H+sqrt(1-2*H)); % a-posteriori error bound
                    inf-norm error <= %g\n',e)</pre>
    end
  end
  x = xnew;
end
```

This prints

```
x = [0.2, -0.1]
     inf-norm error <= 0.05
x = [0.192982, -0.095614]
     inf-norm error <= 3.76594e-05
x = [0.192973, -0.0956046]
```

```
inf-norm error <= 6.68672e-11
x = [0.192973,-0.0956046]
inf-norm error <= 6.3505e-22
```

The actual errors $||x^{(k)} - x^*||_{\infty}$ for k = 1, ..., 4 are $7 \cdot 10^{-3}$, $9.4 \cdot 10^{-6}$, $2.8 \cdot 10^{-11}$, $3 \cdot 10^{-17}$ (the last value is affected by roundoff error)

Summary:

- find bounds $\left| \frac{\partial^2 f_i}{\partial x_j \partial x_k}(x) \right| \leq \beta_{ijk}$ in a region D where you suspect a solution to be
- pick an initial guess $x^{(0)}$ in D
- perform one Newton step: $d := -f'(x^{(0)})^{-1} f(x^{(0)}), x^{(1)} := x^{(0)} + d$
- with M, r from (18): $\| d \|_{\infty} \leq \frac{1}{2} M^{-1}$ and the points with $\| x x^{(0)} \|_{\infty} \leq r$ are in D there is a **unique solution** x^* **in the region** $\| x x^{(0)} \|_{\infty} \leq r$ we have an **a-posteriori bound** $\| x^* x^{(1)} \|_{\infty} \leq \varepsilon$
- if the conditions in the box do not hold: try it again for $x^{(1)}, x^{(2)}, \ldots$ in place of $x^{(0)}$. if $x^{(k)}$ does not seem to converge: you need a better initial guess $x^{(0)}$