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1 Fixed Point Iteration and Contraction Mapping Theorem

Notation: For two sets A,B we write A C Biff x€¢ A = x € B. So A C A is true. Some people use the notation “C” instead.

1.1 Introduction
Consider a function y = g(x) where x,y € R":

V1 g1(x1,.. ., %)

Yn gn(X15- 5 Xn)
We assume that g(x) is defined for x € D where D is a subset of R".

The goal is to find a solution x* of the fixed point equation
8(x) = x.

A method to find x* is the fixed point iteration: Pick an initial guess x{*) € D and define for k =0,1,2,...
XK = g(x0)y

Note that this may not converge. But if the sequence x¥) converges, and the function g is continuous, the limit x* must be a
solution of the fixed point equation.

1.2 Contraction Mapping Theorem

The following theorem is called Contraction Mapping Theorem or Banach Fixed Point Theorem.
Theorem 1. Consider a set D C R" and a function g: D — R". Assume

1. Dis closed (i.e., it contains all limit points of sequences in D)

2.xeD = gx)eD

3. The mapping g is a contraction on D: There exists g < 1 such that
Vx,y € D: 18(x) =gl < qllx—ll )]

Then
1. there exists a unique x* € D with g(x*) = x*
2. for any x9) € D the fixed point iterates given by x**1) := g(x(k)) converge to x* as k — oo

3. x® satisfies the a-priori error estimate

[ =@ 2)

and the a-posteriori error estimate

10— < 77 e a0 3)
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Proof. Pick x(©) € D and define x*) for k = 1,2, ... by x%) = g(x(k_l)). We have from the contraction property (1)
D —x O = o) — g (E)| < ]9 =Y “
and hence
450 ) < ) ®
Letd := Hx(l) —x H We have from the triangle inequality and (5)
Hx(k) _x(k+£)H < Hx(k) _x(k+1)H et Hx(k+£—1) _x(k+£)H

qud+_..+qk+€71d:qkd(l_i_q_"__.__i_qffl)

0] < ®
—q

using the sum of the geometric series Zi;g) g’ < Yo g’ = 1/(1 — q). Note that (6) shows that the sequence x%) is a Cauchy
sequence. Therefore it must converge to a limit x* € R” (since the space R”" is complete). As D is closed, we must have
x*eD.

We need to show that x* = g(x*): We have x**1) = g(x%)), hence

]}im XKD = Jim g (x®))
—yo0 k—ro0

The limit of the left hand side is x*. Note that because of (1) the function g must be continuous. Therefore
lim g(x¥) = g(1lim x®¥)) = g(x*).
k—ro0 k—ro0

Next we need to show that the fixed point x* is unique. Assume that we have fixed points x* = g(x*) and y* = g(y*). Then
we obtain using the contraction property (1)

e =7l = [ls ) = g0 < al|x" =7
implying (1 —g¢g Hx —y H < 0 and therefore Hx -y H =0, 1e., x* =y"

The a-priori estimate (2) follows from (6) by letting ¢ tend to infinity. For the a-posteriori estimate use (2) with k = 1 for
7#0) .= xK) | (1) = yk+1) 0

1.3 Proving the Contraction Property

The contraction property is related to the Jacobian g’(x) which is an n x n matrix for each point x € D. If the matrix norm
satisfies ||g’(x)|| < ¢ < 1 then the mapping g must be a contraction:

Theorem 2. Assume the set D C R" is convex and the function g: D — R" has continuous partial derivatives —= 8 k in D. If
for g < 1 the matrix norm of the Jacobian satisfies
weD: g <q @)

the mapping g is a contraction in D and satisfies (1).

Proof. Let x,y € D. Then the points on the straight line from x to y are given by x+¢(y —x) forz € [0, 1]. As D is convex all
these points are contained in D. Let G(¢) := g(x+1(y —x)), then by the chain rule we have G'(t) = g'(x+1(y —x)) (y — x)
and

1 1
80) ~8() = G(1)=G(0) = [ G'0dr = [ ¢/ (x+1(=2) G—vr

| < 12 1F @) d:

As an integral of a continuous function is a limit of Riemann sums the triangle inequality implies

1 1
80 =@ < [ [l¢ (x+10=0) =0t < [ |lg'(x10=0) Iy =xldr < qly—x|

<q

This is usually the easiest method to prove that a given mapping g is a contraction, see the examples in sections 1.5, 1.6.
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1.4 A-priori and a-posteriori error estimates

The error estimates (2), (3) are useful for figuring out how many iterations we need. For this we need to know the contraction
constant g (typically we get this from (7)).

0)

A-priori estimate: For an initial guess x(*) we can find x(!). Without computing anything else we then have the error

bound Hx(") —x* H < qukq Hx(l) —x© H for all future iterates x*), before (“a-priori”) we actually compute them. We can e.g.
use this to find a value k such that Hx(k) —x* H is below a given tolerance.

A-posteriori estimate: After we have actually computed x¥) (“a-posteriori”) we would like to know where the true
solution x* is located. Let

8 1= —T—||x® — &N D= fx| [r—x®|| < &)
—q
The a-posteriori estimate states that x* is contained in the set Dy. Note:
e the “radius” & of Dy decreases at least by a factor of ¢ with each iteration: &1 < g0
e the sets Dy are nested: Dy DD, D D3 D ---

To show Dy C Dy assume x € Dy 1. Then

4
) < e =) < () - € g 0 =5
——— 1—q 1—q

<Okt

If we use the co-norm: ||x*) —x*|| < & means that for each component x we have a bracket

xe W g2y g,

i.e., the set Dy is a square/cube/hypercube with side length 28 centered in x*).

1.5 Example

We want to find x,x, satisfying the nonlinear system

10x] +xp +sin(x; +x2) =1 )
X1+ 10xy —cos(x; —xp) =2 (10)

We first have to rewrite this system in fixed point form x = g(x). If we solve the first equation for x; in 10x;, and we solve
the second equation for x; in 10x; we get the following system

x1 = 75 [1 —x2 —sin(x; 4+x)] (11)

Xy = % [24x1 +cos(x] —xp)] (12)

This is in fixed point form x = g(x) with g(x) = [ L= —sin(x; +x) ] .

10 24+ xq +COS(X1 —XQ)
First we want to show that g is a contraction using Theorem 2. Therefore we first have to find the Jacobian g’(x):

g’(X)zfo[ —cos(x; +x2) —l—cos(x1+x2)]

1 —sin(x; —x2) sin(x; —x2)
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Let A := g’(x). Let us use the co-norm. We need to find an upper bound for ||A||., = max{|aii|+ |ai2]|,|a21| + |aza|}. We
obtain for any x;,x; € R

lai| = f5l—cos(xi +x)| < 75, lann = 15|—1—cos(xi +x:2)| < 75(1+1)
jaxi| = 751 = sin(x1 —x2)| < {5(1+1),  Jax| < f5sin(v —x2)| < 55
Therefore for any x € R? we have
3
=q<l.
el < = =g

By Theorem 2 we therefore obtain that g is a contraction for all of R.

We now want to use Theorem 1. We need to pick a set D such that the three assumptions of the theorem are satisfied. We
consider two choices:

First choice D =R?: We can use the set D = R?. This set is closed. For any x € R? we certainly have that g(x) € R?. We
have also shown that g is a contraction for all of R2. Therefore we obtain from Theorem 1 that the nonlinear system g(x) = x
has exactly one solution x* in all of R

Second choice D =[—1,1] x[—1,1]: We can use for D the square with —1 <x; <1 and —1 < x, < 1. This is a closed
set (the boundary of the square is included). We now have to check that for x € D we have that y = g(x) € D: We have using
—1<sina<l1,—-1<cosa<1

== (1—1-1) <y = 15[l —x, —sin(x; +x,)] < %(1+1+1):%
0=102-1-1)<y=152+x+cos(x; —x)] < 5 (2+1+1) =15
therefore y € D and the second assumption of the theorem is satisfied. We already showed that g is a contraction for all of

IR?, so the third assumption definitely holds for x,y € D. We can now apply Theorem 1 and obtain that the nonlinear system
has exactly one solution x* which is located in the square D = [—1,1] x [—1,1].

Numerical Computation: We start with the initial guess x(%) = (0,0) . After each iteration we find & and the square Dy
containing x*:

k x(k) 5k Dk

1 (1,.3)7 1.3-107! | [-.02857, .2286] x [.1714, .4286]
2| (.03106, .3080)" | 3.0-1072 | [.00151, .06060] x [.2785, .3376]
3] (.03594, .2993)" | 3.7-107% | [.03221, .03967] x [.2956, .3030]
4| (.03717,.3001)" | 5.3-107* | [.03664, .03770] x [.2996, .3007]
5| (.03689, .3003)" | 1.2-10~* | [.03677, .03701] x [.3001, .3004]

Note: (i) & decreases at least by a factor of g = 0.3 with each iteration.

(i1) The sets Dy, are nested: D1 D Dy, D D3 D ---

1.6 Using the Fixed Point Theorem without the Assumption g(D) C D

The tricky part in using the contraction mapping theorem is to find a set D for which both the 2nd and 3rd assumption of the
fixed point theorem hold:

e xeD = g(x)eD
e g is a contraction on D

Typically we can prove that ||g’(x)|| < ¢ < 1 for x in some convex region D. We suspect that there is a solution x* of the fixed
point equation in D. But it may not be true that g(x) € D for all x € D.

In this case we may be able to prove a result by computing a few iterates x®): Start with k = 0 and an initial guess x0 e D,
Then repeat
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e let k:=k+ 1 and compute x¥) := g(x(*~1))

e compute & := 1 q Hx(k) —x&= Tet Dy = {x | Hx—x(k)H < &}

—q
until either D; € D or x¥) ¢ D.

If the iterates exit from the set D) we cannot conclude anything. But as long as the points x(¥) stay inside D we have & < ¢&
and Dy C Dy. So we expect that for some & the condition Dy C D will be satisfied (if x(k)converges to a limit in the interior
of D the loop must terminate with D; C D; but in general it is possible that the loop never terminates). If the loop does
terminate with D; C D for k = K we have the following result:

Theorem 3. Let D C R" and assume that the function g: D — R" satisfies for g < 1

VeyeD:  lg(x) =gl < gllx—yll
Let X9 € D and define for k =0,1,2, ...

()

= g(xW), O 1= %qu(k) &, Dy = {x| ||x—xW| < &} (13)

If for some K we have "8~V € D and Dg C D there holds
e the equation g(x) = x has a unique solution x* in D

e this solution satisfies x* € Dy, for all k > K

Proof. Let x € Dg. We want to show that g(x) € Dg: As Dg C D the contraction property gives using the definition of Dy
and &
)~ )| < glle x5V < gl )| gl x| < g3+ (1 )5 = &

As Dy is closed and Dg C D the set D := Dy satisfies all three assumptions of the fixed point theorem Theorem 1. Hence
there is a unique solution x* € D. The a-posteriori estimate (3) states that x* € Dy, for all iterates x®) with k > K. Assume
that there is another fixed point y* € D with g(y*) = y*. Then

1" ="l = lle(y") —g (Il < glly" —"]|

As g < 1 we must have [[y* —x*|| = 0. O

Summary:
e Find a convex set D for which you suspect x* € D and where you can show ||g'(x)|| < ¢ < 1

e Pick x( € D and perform the fixed point iteration:
for each iteration:

- find x® and Dy
- if x® ¢ D: stop (we can’t conclude anything)

— if Dy C D: success: there is a unique solution x* € D, and there holds x* € Dy, for this and all following iterations

1—X2 —X1

1| ool } . Then the Jacobian is g'(x) = % [ )

Example: Let g(x) := 3 [ X+ x4 1 x5 14+ 2x1x7

Let us try to use D = [0,a] x [0.a] with a < 1 and the co-norm. We then obtain for x € D that

Hg’(x)“m < Imax{1 +a,a®+142a%}

Fora =1 we get ||¢'(x)]|.. < % which is too large. So we try a = 0.6 which gives ||g’(x)||., < % =:¢q < 1. Therefore g is a

0.41333

0.60533

contraction on D = [0,.6] x [0, .6]. Note that g([ 82 }) = [

] ¢ D, so D does not satisfy all three assumptions of

Theorem 1.
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For x(0) = [ 8

] we obtain

33333, .33333) " € = [—0.42029, 1.08696] x [—0.42029, 1.08696] ¢ D

40741, .45679)" € =[0.12829, 0.68653] x [0.17767, 0.73591] ¢ D

40710, .51393)" € D, =[0.27791, 0.53629] x [0.38474, 0.64313] ¢ D
39929, .54049)" €D, Dy =[0.33926, 0.45933] x [0.48045, 0.60052] ¢ D

x< ) = (39449, .55238)" [ ] x [0.52549, 0.57926] C D

(-
(-
(-
(-

D, Ds = [0.36761, 0.42138] x

Therefore we can conclude from Theorem 3 that there exists a unique solution x* € D = [0,0.6] x [0,0.6]. This solution x*
is located in the smaller square Ds. For k = 5,6,7,... we obtain x* € D, where Dy is a square with side length 28;. As

S < gF385 < (208) “730.027 we can obtain arbitrarily small squares containing the solution if we choose k sufficiently
large.

1.7 How to rewrite a nonlinear system in fixed point form: simplified Newton method

0
For a given nonlinear system f(x) = | : | there are several ways to rewrite it in the form g(x) = x. How can we do this so

0
that the function g is a contraction?

First consider the Newton method: For a current guess x(¥

() =—f(x1) (14)
and let x*+1) .= x(®) 1 g = x®) — "(x%*) =1 £(x0)), Therefore we have the iteration function | g(x) = x — f"(x) "' f(x) |

we solve the linear system

The Newton method is expensive: For each step we have to evaluate f ( ©)) and f’ (x(k)) which are n+n? function evaluations.

Then we have to solve an n X n linear system which costs % + O(n?) operations. In particular for large n this may be too
much work per step.

We can “cheat” as follows: instead of solving (14) with the new Jacobian matrix f’ (x(k)) we keep reusing the first Jacobian
A:= f(x9) | and solve

Ad = — f(x%) (15)

and let x*t1) 1= x®) 4 g = x(k ~1£(x®)). Therefore we have now the iteration function | g(x) =x—A"!f(x)| This

“simplified Newton method” is much cheaper: We only evaluate the initial Jacobian matrix A := f’ (x(o)) and compute its
LU decomposition. For each step we can solve the linear system (15) using forward and back substitution. Hence we have
for each step only z function evaluations and n? operations to solve the linear system.

The simplified Newton method is still locally convergent. But it only converges with order 1 (whereas the Newton method
converges with order 2). This is shown in the following theorem:

Theorem 4. Assume we have f(x*) =0 where f'(x*) is nonsmgular and the partial derivatives I, and I, a are continuous

near x*. Then the simplified Newton method will converge if X% is sufficiently close to a solutton x*.

Fea | < My and |7/~ < er. Let

¢z :=max; ¥ ¢ Miji. Then || f'(x) — f'(¥)]|.. < c2|lx — yl|... Now assume ||x —x*|| < & and Hx(o) —x*|| < & (we will define &
in a moment). Then

Proof. Assume we have a solution x*, and for Hx —x© Hoo < € we have bounds

JW)=1-a" ) =" ()~ f(x))

/(X)H <cie HX(O)_XH < 102268

Hg/(x)Hoo < ’f’(x(O)

-
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Now we can define 6 > 0 such that § < € and ¢1¢226 < g < 1. Hence for D := {x | ||x —x*|| < 8} we have that D is closed
and that g is a contraction on D with g < 1. We also have for x € D that ||g(x) —x*|| = ||g(x) —g(x")|| < g|lx—x*|| < gb < 9,
hence g(x) € D. O

We can now use the contraction mapping theorem to show that there exists a unique solution in a region around our initial
(0)
guess x\V.

We assume: Near our initial guess x(¥) we have bounds f; ik for the 2nd partial derivatives:

‘ 9% fi(x)

dx;0xy < Bijk for Hx_x(o) Hoo <R

Then we have for x with Hx —x© Hw <R

S ] < (B -+
=:Bj;
g0 =A" (f6) - f()
¢l < Jabsca)B, -+~ 10

=M
where abs(A~!) € R " has entries which are the absolute values of the entries of A~! and B € R"*" has entries B;;. Here

We perform one Newton step: (the first step of the simplified Newton method is an actual Newton step)
di=-A" ), D =xOpq 5= d|.,

We want to use Theorem 3 on the region D, := {x | Hx —x0 Hw < r} with a suitable » < R.

We need to choose r € (0,R] so that the assumptions of the theorem are satisfied:

- !
e ¢’ is a contraction for x € D,: Because of (16) we need ¢ := Mr < 1

e the “a-posteriori region” D; = {x | Hx x Hw <15 Hx —xl H } is a subset of D,. This is satisfied if
|
ot et =]
oo =) oo 7q
o !
ie, —<r 17
l—¢q

With g := Mr < 1 the condition (17) can be written as
!

§< r(1—Mr)=:F(r)

Note that the quadratic function F(r) = r(1 — Mr) is zero at r = 0 and r = M~! and has at 1M ! the maximum F (M ~!) =
1M~ Hence we need § < ;M ~'. The smallest r with F(r) > § is ry := M~ (1 —/1—4M§) . We have shown:
Theorem 5. Assume that for Hx —x Hw <R

s 24
e the functions f(x), 3}’:" (x), afv g; are continuous

e we have bounds

3x Bx ‘ = ﬁl]k
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Let A := f'(x9) and let

oo )|

oo

n
y B,‘j = Z Bijkv M= HabS(Ail)BHoo, .2 =
k=1

If 5§%M*1 and R > r

e the problem f(x*) = 0 has a unique solution x* in the region Hx —x(0 Hw < min{r,,R}

H 5 4M §?

<
o= (Mr1)"' =1 (1—4M8)+/1—4M35

o the simplified Newton method starting with x%) converges to x*.

o for x") :=x(0 — A~ £(x(0) we have Hx* —x

Note that we do not assume that the problem f(x) = 0 has a solution.

1 +cos(x; +x2),  cos(x;+x2)
—sin(x; —x2), 14sin(x; —xp)

x1 +sin(x; +x3) — %

Example 1: Find a zero of f(x)= [ X2 +cos(x) —x) — 1
2 1 —A2) —

|- we tave ) = |

% f;

Note that all second derivatives 3 ; (x) are of the form £sin(---) or £cos(---), hence B;jx = 1 for all i, j,k where R is
XjoXk

arbitrarily large. We have B;; = Zi:l Bijx =2 forall i, j.

-5

First try x(0) = [ 8 ]: Then f(x(0)) = [ 0 ],A = f(x0) = [ (2) i },Al = [ : ] and d = —A~! f(x(0)) =

1
[ 6 ] 8 =|d|,, = }. Hence

=4

p— D=

abs(A"1)B = [

IR SO )

is greater than | ;M B % , so we cannot use the theorem. We need an initial guess closer to the solution.

But here | 6 = %

1
The Newton step starting at x(©) = [ 8 ] gives x(1) = { 4 ]

1

Second try x(¥) = [ 4 }: Then f (x(O)) _ [

—.002596 1.9689 .96891 ] A‘l—[ 46273 —.35942
0 ’ N

—.031088}’14' F) [—.2474 1.2474 091776 73038

—.0099723

andd = A~1 () = [ 022944

], 0 =||d||., = .022944. Hence

bs(A~1)5 — 46273 35942 1[2 27 [ 1.6443 1.6443
abs ~ | 091776 73038 || 2 2 | T | 1.6443 1.6443

] ,  M:=|abs(A"")B|| =3.2886

Now | 6 = .022944 | is less than %M -1 -0.07602 |, yielding r; = .024999, r, = .27908. Therefore the theorem states that

there is a unique solution in the square [—.0290799, .52908] x [—.27908, .27908] of size 2r», centered in x(%). This solution

is actually located in the smaller square [.237972, 0.242083] x [0.0208887, 0.0249992] of size Z(Il/lrl)%lfl’ centered in x(1).

f =@(x) [ x(1)+sin(x(1)+x(2))-.5 ; x(2)+cos(x(1l)-x(2))-1 1;
fp = @(Xx)[ 1+cos(x(1)+x(2)) , cos(x(1)+x(2)) ; -sin(x(1)-x(2)) , l+sin(x(1)-x(2))]1;

B=1[22;2 2]; % from bounds beta_{ijk} for 2nd derivatives
x = [0;0]; % initial guess
for i=1:5

b =f(x); A= fp(x); ALl = inv(A);
= -Aixb; delta = norm(d,Inf);
X + d;

X
|
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fprintf(’x = [%g,%g]1\n’,x);
M = norm(abs(Ai)*B,Inf);

if delta <= 1/(4xM) % condition for delta in theorem
rl = (1-sqrt(1-4xMxdelta))/(2+M); % condition for rl is true since bounds hold everywhere
e = delta/(1/(M+rl)-1); % a-posteriori error bound
fprintf(’ inf-norm error <= %g\n’,e)
end
end
This prints
x = [0.25,0]
x = [0.240028,0.022944]
inf-norm error <= 0.00205526
X = [0.239842,0.0233441]
inf-norm error <= 5.39279e-07
X = [0.239842,0.0233442]
inf-norm error <= 5.45924e-14
X = [0.239842,0.0233442]

inf-norm error <= 5.60471e-28

Note that the actual errors ||x®) —x*||_ for k =2,3,4,5 are 4- 1074, 1.3- 1077, 1.3- 1074, 8.3-10~'7. The error bound
5.6-10728 in the last case is for the exact x(°). The computed x%) is affected by roundoff error of about 10716,

1.8 Newton-Kantorovich theorem

In Theorem 5 we used the convergence of order 1 for the simplified Newton method. One can prove a sharper result using
the convergence of order 2 for the Newton method:

Theorem 6 (Newton-Kantorovich). Assume that for Hx —x©) Hm <R

. 2
e the functions f(x), 3}2 (x), aig;k are continuous

*f;
ax_/gxk (x)’ < Bijk

Let A := f'(x9) and let

e we have bounds

! 1—vV1-26M 28
6= HAil %) H , B;i:= ik M := |labs(A"1B]| _, ri= = 18
FEN| o By= X B [abs(a~")B]|., M +vi—zom
If 3§%M_1 andR>r
e the problem f(x*) =0 has a unique solution x* in the region Hx—x(o) |l.<r
M§?
(1) .— 10 _ A1 £(x(0 we h H . <1>H <
o forx\V :=x x%)) we have ||x* —x
J ) © (1-6M)++v1—-26M
e the Newton method starting with x©) converges to x*
i _1
Example 1: For f(x) = [ ;Cl i(szi)ns(())ccl +);2)) % ] with x(0) = [ 8 } we get § = 5 and ;M = §, so we cannot use Theo-
2 1—X2)—

rem 6. But with x(¥) = [ 6 ] we have 6 < %M ~! and we can use the theorem. If we modify the program from above to use

the a-posteriori bound from the Newton-Kantorovich theorem we get for x(k), k=2,...,5 the bounds 9.4 - 1074,2.7-1077,
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2.7-107'4,2.8-10728. The actual errors were 4- 1074, 1.3-1077, 1.3-107'4,8.3-10~!7 (this last value affected by roundoff
error).

2X1 —XZ—XI.XQ—%

Example 2: Find a zero of f(x) = [ 2 +x1 (1 —2)

} in the square [—1,1] x [~1,1]. We find the Jacobian J(x), its

partial derivatives [%Jg,%]g} and bounds ’3%]1']' + aixz‘]ij <B;;
) = 2—x, —1l-—x [0,—1] [—1,0] B 1 1
Tl 1=x3, 2-2xx | [0,—2x)] [~2x2,—2x1] |’ 2
0 -5 2 -1 4 2
0) = : =1 i 0)y = = f(x0) = -1
We try x [0].WehaveR 5 and obtain f(x'") [ 0 ],A. F(xP) {l ) ],A [_'2 .4}and
d=—-A""f(x) = [ _'21 ] 8 =||d||.. = .2. Hence

=1.6

oo

wuche= 3 30 ]=[e 7] w6 ]

Here|0 = .2 < %M —1'= 3125|and R > r = .25 so we can use the Newton-Kantorovich theorem (we cannot use Theorem 5

since 6 = .2 > %M*I = .15625). We obtain that there is a unique solution in the square Hx—x(o) Hm <r,ie., [-.25,.25] x
[—.25,.25]. Forx) =0 4 = [ _‘?1 ] we obtain the bound |[x(1) —x*||_ < Hmf‘i—ylfm = .05, i.e., the solution is
actually in the square [.15,.25] x [—.15 x —.05].

f=@(x) [ 2%x(1)-x(2)-x(1)*x(2)-.5 ; 2xx(2)+x(1)*(1-x(2)"2) ];

fp = @(x)[ 2-x(2) , -1-x(1) ; 1-x(2)72 , 2-2xx(1)*x(2) 1;

B=1[11;12]; from bounds beta_{ijk} for 2nd derivatives

xmin = [-.5;-.5]; xmax = [.5;.5]; rectangle where bounds hold: xmin(j) <= x(j) <= xmax(j)

o

o°

o°

x = [0;0];
for i=1:4
= f(x); A= fp(x); AL = inv(A);
= -Aixb; delta = norm(d,Inf);
xnew = X + d;
fprintf('x = [%g,%gl\n’,xnew);
M = norm(abs (Ai)*B,Inf);
if delta <= 1/(2xM)
H = deltaxM;
r = 2xdelta/(1l+sqrt(1-2xH));
if all(x-r>=xmin) && all(x+r<=xmax) % check condition for r in Theorem
e = Mxdelta”2/(1-H+sqrt(1-2xH)); % a-posteriori error bound

initial guess

o T
| |

condition for delta in Newton-Kantorovich Theorem

o°

fprintf(’ inf-norm error <= %g\n’,e)
end
end
X = Xnew;
end
This prints
x = [0.2,-0.1]
inf-norm error <= 0.05
x = [0.192982,-0.095614]

inf-norm error <= 3.76594e-05
[0.192973,-0.0956046]

X
Il
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inf-norm error <= 6.68672e-11
x = [0.192973,-0.0956046]
inf-norm error <= 6.3505e-22

The actual errors Hx“‘) —x*Hw fork=1,...,4are 7-1073,9.4-107%, 2.8- 107!, 3.10~!7 (the last value is affected by
roundoff error)

Summary:

0% f;

e find bounds Fx o (x)

< Bijk in a region D where you suspect a solution to be

e pick an initial guess x(*) in D

e perform one Newton step: d := — f(x(0) =1 f(x(©), x(1) := x(0) 4-4

e with M, r from (18): |if ||d||. < iM ™' and the points with H)c—x(o)Hoo <rareinD

there is a unique solution x* in the region Hx —x© Hm <r
we have an a-posteriori bound Hx* —x(M Hw <e

e if the conditions in the box do not hold: try it again for x("),x(?)_ . in place of x(©) .
if x(®) does not seem to converge: you need a better initial guess x(©)



