Interpolation

1 What is interpolation?

For a certain function f(x) we know only the values y; = f(x;),...,y» = f(x,). For a point ¥ different from x,...,x, we
would then like to approximate f(X) using the given data xy,...,x, and yi,...,y,.

This means we are constructing a function p(x) which passes through the given points and hopefully is close to the function
f(x). It turns out that it is a good idea to use polynomials as interpolating functions (later we will also consider piecewise
polynomial functions).

2 Why are we interested in this?

o Efficient evaluation of functions: For functions like f(x) = sin(x) it is possible to find values using a series expansion
(e.g. Taylor series), but this takes a lot of operations. If we need to compute f(x) for many values x in an interval [a, b]
we can do the following:

— pick points xi,...,x, in the interval
— find the interpolating polynomial p(x)
— Then: for any given x € [a,] just evaluate the polynomial p(x) (which is cheap) to obtain an approximation for

f()

Before the age of computers and calculators, values of functions like sin(x) were listed in tables for values x; with a
certain spacing. Then function values everywhere in between could be obtained by interpolation.

A computer or calculator uses the same method to find values of e.g. sin(x): First an interpolating polynomial p(x) for
the interval [0, /2] was constructed and the coefficients are stored in the computer. For a given value x € [0, /2], the
computer just evaluates the polynomial p(x) (once we know the sine function for [0, /2] we can find sin(x) for all x).

e Design of curves: For designing shapes on a computer we would like to pick a few points with the mouse, and then
the computer should find a “smooth curve” which passes through the given points.

e Tool for other algorithms: In many cases we only have data xi,...,x, and y,...,y, for a function f(x), but we would
like to compute things like

— the integral I = | f f(x)dx
- a“zero” x, of the function where f(x,) =0
— aderivative f’(¥) at some point £.

We can do all this by first constructing the interpolating polynomial p(x). Then we can approximate / by fab p(x)dx.
We can approximate x, by finding a zero of the function p(x). We can approximate f’(¥) by evaluating p’ ().

3 Interpolation with polynomials

3.1 Basic idea

If we have two points (x;,y1) and (x;,y,) the obvious way to guess function values at other points would be to use the linear
function p(x) = ¢o + c1x passing through the two points. We can then approximate f(X) by p(%).

If we have three points we can try to find a function p(x) = co + c1x + cox passing through all three points.

If we have n points we can try to find a function p(x) = co +cix+--- +c,_1x*~! passing through all n points.

3.2 Existence and uniqueness

We first have to make sure that our interpolation problem always has a unique solution.

Theorem 3.1. Assume that x, ... ,x, are different from each other. Then for any yi,...,y, there exists a unique polynomial
Pn1(x) =co+c1x+ -+ cu1X* ! such that

p(xj) =y; forj=1,... n.

Proof. We use induction. Induction start: For n = 1 we need to find po(x) = ap such that po(x;) = y;. Obviously this has
a unique solution
ag = yi. (D

Induction step: We assume that the theorem holds for n points. Therefore there exists a unique polynomial p,_;(x) with
Pn—1(xj) =yjfor j=1,...,n. We can write p,(x) = p,—1(x) +¢(x) and must find a polynomial ¢(x) of degree < n such that
q(x1) = -+ = q(x,) = 0. Therefore ¢(x) must have the form

q(x) = an(x —x1) - (x =)

(for each x; we must have a factor (x — x;), the remaining factor must be a constant a, since the degree of ¢(x) is at most
n). We therefore have to find ¢, such that p,(x,+1) = yn+1. This means that g(x,+1) = an(Xpt1 —X1) - (X1 — Xn) =
Yn+1— Pn—1(Xn+1) which has the unique solution

yl’H‘I _pﬂ—l('xﬂ+1) (2)

a fry
" (e —x1) e (X — Xn)

as (x, —x1)- -+ (x, —x,—1) is nonzero. O

Note that the proof does not just show existence, but actually gives an algorithm to construct the interpolating polynomial:
We start with po(x) = ap where ap = y;. Then determine a; from (2) and have p;(x) = ap + a1 (x — x). We continue in this
way until we finally obtain

Pn—1(x) =ao+ai(x—x1)+ax(x—x1)(x—x2) + -+ an_1(x—x1) - (x —x-1). 3)

This is the so-called Newton form of the interpolating polynomial. Once we know the coefficients ay,...,a,-1 we can
efficiently evaluate p,_;(x) using nested multiplication: E.g., for n = 4 we have

p3(x)=((a3-(x—x3)+a2) - (x—x2) +ai) - (x—x1) +ao.
Nested multiplication algorithm for Newton form: Given interpolation nodes xy, ..., x,, Newton coefficients ay, ...,a,—1,
evaluation point x, find y = p,_(x).

Yy i=dap-1
Forj=n—1n-2,...,1:
yi=y-(x—xj)+aj

Note that this algorithm takes n — 1 multiplications (and additions).

3.3 Divided differences and recursion formula

Multiplying out (3) gives
Prue1(x) = @y 1 X" r(x)

where r(x) is a polynomial of degree < n—2. We see that a, ; is the leading coefficient (i.e., of the term x*~!) of the
interpolating polynomial p,_;. For a given function f and nodes xi,...,x,_; the interpolating polynomial p,_ is uniquely
determined, and in particular the leading coefficient a,,_;. We introduce the following notation for the leading coefficient
of an interpolating polynomial:

Flxts . o x0] = an—

Examples: The notation f[x;] denotes the leading coefficient of the constant polynomial interpolating f in x;, i.e.,

flxjl = f(xj) “)

The notation f[x;,x;,1] denotes the leading coefficient of the constant polynomial interpolating f in x;, i.e.,

f(xje1) = f(x))

flxj,xjp1| = ———7"—"F7.
] = =
In general the expression f[xi,...,x,] is called a divided difference. Recall that the arguments xi,...,x, must be different
from each other. Note that the order of xy,...,x, since there is only one interpolating polynomial, no matter in which order
we specify the points.
Theorem 3.2. There holds the recursion formula
X2yoo s Xmt1] — J X1y 003Xy
f[xla s ’merl] = f[i] f["] (5)
Xm+1 — X1

Proof. Let p;.._u(x) denote the interpolating polynomial for the nodes xi,...,x,. Then we can construct the polynomial
Pi....m+1(x) for all nodes xy, ..., X1 as

pl,..‘,erl(x) = pl,...,m(x) ‘|‘f[xl,' .. axm+1] : (x—xl) ce (x_xm)-

Alternatively, we can start with the interpolating polynomial p; 41 for the nodes x», ..., x,,41 and construct the polynomial
D1,...m1 (x) for all nodes xi, ... Xy as

Pt 1(X) = P21 (X) + fIn, o Xp1] - (0 —x2) - (X = X 1)
Taking the difference of the last two equations gives

0=p1,..m(x) = P21 () + (x=x2) - (x = Xp) F X1, - Xmget] - (X —21) = (X = Xmg1))

(Xm+1—x1)
P2, mt1(X) = p1m(%) = (X1 —X1) fIx1, ey Xt] - X+ O™)
f[x27~ . umerl]xm _f[-xlu* . wxm]xm'i_O(xmil)
(f[x27' .. 7xm+1] _f[xla' .. 7xm]) - (-xm+1 —Xl) 'f[xlu cee 7xm+1]

where O(x™~!) denotes polynomials of order m — 1 or less. O

3.4 Divided difference algorithm

We now can compute any divided differences using (4) and (5). Given the nodes x,...x, and function values yy,...,y, we
can construct the divided difference table as follows: In the first column we write the nodes xi,...,x,. In the next column
we write the divided differences of 1 argument f[x;] = yi,...,f[x,] = y». In the next column we write the divided differences
of 2 arguments f[x1,x2],...,f[x,—1,X,] Which we evaluate using (5). In the next column we write the divided differences of 3
arguments f[x,x2,x3],...,f[Xn—2,%,—1,%,] which we evaluate using (5). This continues until we write in the last column the
single entry flxi,...,xn].

x| flx] o flx,x] flx1,x2,x3] el x)

f[xn—Zaxn—laxn]

f[xnfl 7xn]

Xn f[xn]
Using the divided difference notation we can rewrite the Newton form (3) as
Pn—1(x) = flx]+ flxr,x)(x—x1) + -+ flxr, o xn] (e —xp) - (x—x,-1).

Note that this formula uses the top entries of each column of the divided difference table.

However, we can also consider the nodes in the reverse order x,,x,_1,...,Xx; and obtain the alternative Newton form

pnfl(x) :f{xn] +f[xn71axn](x_xn) +"'+f[xla---yxn](x_xn)(x_xnfl) ---(X—XZ)

for the same polynomial p,_;(x). Note that this formula uses the bottom entries of each column of the divided difference
table.

Let us use this second formula. We can implement this just storing n numbers dy,...,d,. We can first compute the first
column dy,...,d,, then we compute the second column overwriting dy,...,d,_1,. .., the last column overwriting d;:

dy = flx] dy := flx1,x2] dy := flx1,x2,x3] cedy = flxy e x)

dp—2 = f[xn727xn717xn]

dy = flx4]
In the end we have d,, = f[x,], dn—1 = f[Xn—1,%n)>--.» d1 = flx1,...,x,] so that

pnfl(x) :dn“‘dnfl(x_xn)+dn72(x_xn)(x_xn71)+"'+d1(x_xn)"'(x_x2)

Divided difference algorithm, Part 1: Given x,...,x,, y1,...,y, find the Newton coefficients di,...,d,
Fori=1,...,ndo:
di =y
Fork=1,...,n—1do:
Fori=1,...,n—kdo:
d = dit1 —d;
Xitk — Xi
Divided difference algorithm, Part 2: Given xy,...,x,, di,...,d, and an evaluation point x find y = p,_;(x)
y:=d
Fori=2,...)n:
yi=y-(x—x;)+d;

This gives the following Matlab code:

function d = divdiff(x,y)
compute Newton form coefficients of interpolating polynomial
length(x);
=Y
for k=1:n-1

for i=1l:n-k

d(i) = (d(i+1)-d(i))/(x(i+k)-x(1));

end

end

Q S o°
1l

function yt = evnewt(d,x,xt)
% evaluate Newton form of interpolating polynomial at points xt
yt = d(1)*ones(size(xt));
for i=2:1length(d)
yt = yt.x(xt-x(1)) + d(i);
end

xj]01 2 4
yi|1 2 31
We enter the x; values in the first column and the y; values in the second column:

xj | flel flgxged] flxgxienxgee] flxnxo,x3,x4)

Example: We are given the data points . Find the interpolating polynomial in Newton form.

0| 1 1 0 —3
2

) 1 -2

2| 3 ~1

41 1

We then obtain the remaining columns by using the recursion formula.

For the nodes in order x;,x7,x3,x4 we obtain the Newton form
p(x) = fla] + flxr,xo] (x —x1) 4 flxr, x, 03] (x —x1) (x —x2) 4 flxn, 02,03, %4] (o — 1) (o — x2) (x — x3)
=1+41-(x—=0)+0- (x—0)(x— 1)+ (—2)(x—0) (x — 1) (x — 2)
For the nodes in order x4,x3,x2,x; we obtain the Newton form
p(x) = flxa] + flxs,xa] (x —xa) + flx2,x3,28] (x —x4) (x —x3) + flx1, 22,03, %4] (o — x4) (o — x3) (x — x2)
=1+ (D=4 + (=) -HE-2)+(—5)x—H(x=2)(x—1)
In Matlab we can plot the given points and the interpolating polynomial as follows:

x =1[0,1,2,4]1; y = [1,2,3,1];
d = divdiff(x,y)

xt = -.4:.01:4.2;

yt = evnewt(d,x,xt);
plot(x,y,’'o’,xt,yt)

o°

given x and y values

find coefficients of Newton form

x-values for plotting

evaluate Newton form at points xt

plot given pts and interpolating polynomial

o® o° o°

o°

15 | .

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

3.5 Error formula for f(x) — p(x)

A divided difference f[x;,x;11] of two arguments satisfies

f(xje1) — f(x))

Xj1 —Xj

= f'(s)

flxjsxje] =

for some s € (xj,xj41) by the mean value theorem. For general divided differences we have a similar result:

Theorem 3.3. Assume that the derivatives f,f’,..., ") exist and are continuous. Let xi,...,x,be different from each
other. Then there exists s € (min{xy,...,x,},max{xy,...,x,}) such that
_ ")
f[XI,...,xn]—W. (6)

Proof. Consider the interpolating polynomial p(x) and the interpolation error e(x) = f(x) — p(x). Then the function e(x) is
zero for xy,...,x,, hence it has at least n different zeros.

Since e(x;) = 0 and e(x;) = 0 there exists by the mean value theorem a point x| € (x1,x2) with ¢’(x}) = 0. Hence the function
¢'(x) has at least n — 1 different zeros. Similarly, the function ¢”(x) has at at least n — 2 different zeros.. . ., the function (")
has at least one zero s. Hence we have

0= " D(s) = £V (5) — pl" 1 (s),

Since p(x) = flx1,..., %, Jx" ' + O(x"~2) we have p"~ D (x) = flxy,...,x,](n—1). O
Let xj,...,x, be different from each other and let p,_;(x) be the interpolating polynomial for the function f(x). Let ¥
be different from xj,...,x,. We want to find a formula for the interpolation error f(X) — p,—(X): We first construct an
interpolating polynomial p, (x) which interpolates in the points xi,...,x, and ¥. We must have

Pu(x) = pu—1(x) + flxr, - xn, X (x—x1) -+ - (x — xp)
and using f(X) = p,(¥) we obtain
FX) = pn1(%) = flx1, .oy 0, X (X—x1) -+ (F—x).

We can now express the divided difference using (6) and obtain

Theorem 3.4. Assume that the derivatives f,f',...,f") exist and are continuous. Let xi,...,x,be different from
each other and let p,_| denote the interpolating polynomial. Then there exists an intermediate point s €
(min{xy,...,x,,X},max{xi,...,x,,%}) such that

f"(s)

(X=xp) e (X—xp).

f(f) —pn,1(f) =

The function w(x) := (x —x1)--- (x —x,) is called the node polynomial.

In practice we don’t know where the intermediate point s is located. If we know that xj,...,x, and X are in an interval [a,b]
we have the (possibly very pessimistic) upper bound

g g 1 -
0= p(o) < o (max [5]) - foto)
n' \sela,b
e The first term depends only on the function f and not on the nodes. This term becomes zero if) = 0 which happens
if and only if f is a polynomial of degree < n — 1. In this case we must have p,_1(x) = f(x) since the interpolating
polynomial is unique.

e The second term | (X)| depends only on X and the nodes xi,...,x, (and not on f). This term becomes equal to zero at
the nodes, and it is small if ¥ is close to one of the nodes.

3.6 Interpolation with multiple nodes

So far we assumed that the nodes xi,...,x, are different from each other. What happens if we move two nodes closer and
closer together?

Example 1: Consider three nodes x; < x, < x3. In this case we have the divided difference table

x| f(x) f[xlaXZ]:% f[xl,xz,x3]zw

x| f(x2) f[xz,x3]:%jl;(xz)
x3 | f(x3)

and the interpolating polynomial p(x) = fx;] + flxi, x2](x —x1) + fx1,22,x3] (x —x1) (x — x2).

Now we move the node x; towards x;and want to know what happens in the limit. Assume that the function f is differentiable,
then we get for f[x;,x;]
i &2) = fl)

XX X2 — X1

= f(x1)
Hence we define f[xi,x1] = f'(x;). The divided difference table becomes

X1 f(xl> f[XI,XI]:f/(xl) f[xlﬁxth]:W
xi | f(x1) f[xl,x3]:% :
x3 | f(x3)

and the interpolating polynomial is p(x) = flx1] + flx1,x1](x —x1) + fPer,x1,x3] (x = x1) (x = x1). This function still satisfies

p(x1) = f(x1) and p(x2) = f(x2). Additionally we have p’(x;) = f[x1,x1] = f'(x1). Therefore p(x) solves the following
problem:

Given f(x1), f(x1), f(x3) find an interpolating polynomial

Example 2: Consider nodes x; = xp = x3 < x4 = X5s.

xi | fxa) flnxa] = f(xa) flxnx] = 5" (x1) e fler,xn,xn,xa, x4
x| fO) flaal=f0a) o fhonx] = s
xi | fla) flxnxa] = 7’f(x;i:fl(xl) flx1,x4,x4] = ‘7f[x4’x£:£[xl’x4]
xa | flxa) flra,xa] = f(xa)
xq | f(xq)
Summary:

e For the nodes x; < xp < --- < x, we now allow multiple nodes. For a node x; of multiplicity m we are given
L)L) f D (x)).

e We want to find an interpolating polynomial p(x) of degree< n — 1 which satisfies the n conditions for the function
values and derivatives. This interpolation problem has a unique solution p(x).

e We define divided differences with m identical nodes

S (x;)

f[xj 7xj] = (m—l)'

e Using this definition, we can fill the whole divided difference table and then obtain
p(x) = flxi]+ flen,x) (x—x1) +- -+ flxr, .., x) (x—x1) - (x —x-1)

e The error formula also holds for multiple nodes:

where ¢ is between the points x,x1,...,x,

