

Interpolation

1 What is interpolation?

For a certain function $f(x)$ we know only the values $y_1 = f(x_1), \dots, y_n = f(x_n)$. For a point \tilde{x} different from x_1, \dots, x_n we would then like to approximate $f(\tilde{x})$ using the given data x_1, \dots, x_n and y_1, \dots, y_n .

This means we are constructing a function $p(x)$ which passes through the given points and hopefully is close to the function $f(x)$. It turns out that it is a good idea to use polynomials as interpolating functions (later we will also consider piecewise polynomial functions).

2 Why are we interested in this?

- **Efficient evaluation of functions:** For functions like $f(x) = \sin(x)$ it is possible to find values using a series expansion (e.g. Taylor series), but this takes a lot of operations. If we need to compute $f(x)$ for many values x in an interval $[a, b]$ we can do the following:

- pick points x_1, \dots, x_n in the interval
- find the interpolating polynomial $p(x)$
- Then: for any given $x \in [a, b]$ just evaluate the polynomial $p(x)$ (which is cheap) to obtain an approximation for $f(x)$

Before the age of computers and calculators, values of functions like $\sin(x)$ were listed in tables for values x_j with a certain spacing. Then function values everywhere in between could be obtained by interpolation.

A computer or calculator uses the same method to find values of e.g. $\sin(x)$: First an interpolating polynomial $p(x)$ for the interval $[0, \pi/2]$ was constructed and the coefficients are stored in the computer. For a given value $x \in [0, \pi/2]$, the computer just evaluates the polynomial $p(x)$ (once we know the sine function for $[0, \pi/2]$ we can find $\sin(x)$ for all x).

- **Design of curves:** For designing shapes on a computer we would like to pick a few points with the mouse, and then the computer should find a “smooth curve” which passes through the given points.
- **Tool for other algorithms:** In many cases we only have data x_1, \dots, x_n and y_1, \dots, y_n for a function $f(x)$, but we would like to compute things like

- the integral $I = \int_a^b f(x) dx$
- a “zero” x_* of the function where $f(x_*) = 0$
- a derivative $f'(\tilde{x})$ at some point \tilde{x} .

We can do all this by first constructing the interpolating polynomial $p(x)$. Then we can approximate I by $\int_a^b p(x) dx$. We can approximate x_* by finding a zero of the function $p(x)$. We can approximate $f'(\tilde{x})$ by evaluating $p'(\tilde{x})$.

3 Interpolation with polynomials

3.1 Basic idea

If we have two points (x_1, y_1) and (x_2, y_2) the obvious way to guess function values at other points would be to use the linear function $p(x) = c_0 + c_1x$ passing through the two points. We can then approximate $f(\tilde{x})$ by $p(\tilde{x})$.

If we have three points we can try to find a function $p(x) = c_0 + c_1x + c_2x^2$ passing through all three points.

If we have n points we can try to find a function $p(x) = c_0 + c_1x + \dots + c_{n-1}x^{n-1}$ passing through all n points.

3.2 Existence and uniqueness

We first have to make sure that our interpolation problem always has a unique solution.

Theorem 3.1. *Assume that x_1, \dots, x_n are different from each other. Then for any y_1, \dots, y_n there exists a unique polynomial $p_{n-1}(x) = c_0 + c_1x + \dots + c_{n-1}x^{n-1}$ such that*

$$p(x_j) = y_j \quad \text{for } j = 1, \dots, n.$$

Proof. We use induction. **Induction start:** For $n = 1$ we need to find $p_0(x) = a_0$ such that $p_0(x_1) = y_1$. Obviously this has a unique solution

$$a_0 = y_1. \tag{1}$$

Induction step: We assume that the theorem holds for n points. Therefore there exists a unique polynomial $p_{n-1}(x)$ with $p_{n-1}(x_j) = y_j$ for $j = 1, \dots, n$. We can write $p_n(x) = p_{n-1}(x) + q(x)$ and must find a polynomial $q(x)$ of degree $\leq n$ such that $q(x_1) = \dots = q(x_n) = 0$. Therefore $q(x)$ must have the form

$$q(x) = a_n(x - x_1) \cdots (x - x_n)$$

(for each x_j we must have a factor $(x - x_j)$, the remaining factor must be a constant a_n since the degree of $q(x)$ is at most n). We therefore have to find a_n such that $p_n(x_{n+1}) = y_{n+1}$. This means that $q(x_{n+1}) = a_n(x_{n+1} - x_1) \cdots (x_{n+1} - x_n) = y_{n+1} - p_{n-1}(x_{n+1})$ which has the unique solution

$$a_n = \frac{y_{n+1} - p_{n-1}(x_{n+1})}{(x_{n+1} - x_1) \cdots (x_{n+1} - x_n)} \tag{2}$$

as $(x_n - x_1) \cdots (x_n - x_{n-1})$ is nonzero. □

Note that the proof does not just show existence, but actually gives an algorithm to construct the interpolating polynomial: We start with $p_0(x) = a_0$ where $a_0 = y_1$. Then determine a_1 from (2) and have $p_1(x) = a_0 + a_1(x - x_1)$. We continue in this way until we finally obtain

$$p_{n-1}(x) = a_0 + a_1(x - x_1) + a_2(x - x_1)(x - x_2) + \cdots + a_{n-1}(x - x_1) \cdots (x - x_{n-1}). \tag{3}$$

This is the so-called **Newton form** of the interpolating polynomial. Once we know the coefficients a_0, \dots, a_{n-1} we can efficiently evaluate $p_{n-1}(x)$ using **nested multiplication**: E.g., for $n = 4$ we have

$$p_3(x) = ((a_3 \cdot (x - x_3) + a_2) \cdot (x - x_2) + a_1) \cdot (x - x_1) + a_0.$$

Nested multiplication algorithm for Newton form: Given interpolation nodes x_1, \dots, x_n , Newton coefficients a_0, \dots, a_{n-1} , evaluation point x , find $y = p_{n-1}(x)$.

$$y := a_{n-1}$$

For $j = n-1, n-2, \dots, 1$:

$$y := y \cdot (x - x_j) + a_{j-1}$$

Note that this algorithm takes $n - 1$ multiplications (and additions).

3.3 Divided differences and recursion formula

Multiplying out (3) gives

$$p_{n-1}(x) = a_{n-1}x^{n-1} + r(x)$$

where $r(x)$ is a polynomial of degree $\leq n-2$. We see that a_{n-1} is the **leading coefficient** (i.e., of the term x^{n-1}) of the interpolating polynomial p_{n-1} . For a given function f and nodes x_1, \dots, x_{n-1} the interpolating polynomial p_{n-1} is uniquely determined, and in particular the leading coefficient a_{n-1} . We introduce the following **notation for the leading coefficient of an interpolating polynomial**:

$$f[x_1, \dots, x_n] = a_{n-1}$$

Examples: The notation $f[x_j]$ denotes the leading coefficient of the constant polynomial interpolating f in x_j , i.e.,

$$f[x_j] = f(x_j) \quad (4)$$

The notation $f[x_j, x_{j+1}]$ denotes the leading coefficient of the constant polynomial interpolating f in x_j , i.e.,

$$f[x_j, x_{j+1}] = \frac{f(x_{j+1}) - f(x_j)}{x_{j+1} - x_j}.$$

In general the expression $f[x_1, \dots, x_m]$ is called a **divided difference**. Recall that the arguments x_1, \dots, x_m must be different from each other. Note that the order of x_1, \dots, x_n since there is only one interpolating polynomial, no matter in which order we specify the points.

Theorem 3.2. *There holds the recursion formula*

$$f[x_1, \dots, x_{m+1}] = \frac{f[x_2, \dots, x_{m+1}] - f[x_1, \dots, x_m]}{x_{m+1} - x_1} \quad (5)$$

Proof. Let $p_{1,\dots,m}(x)$ denote the interpolating polynomial for the nodes x_1, \dots, x_m . Then we can construct the polynomial $p_{1,\dots,m+1}(x)$ for all nodes x_1, \dots, x_{m+1} as

$$p_{1,\dots,m+1}(x) = p_{1,\dots,m}(x) + f[x_1, \dots, x_{m+1}] \cdot (x - x_1) \cdots (x - x_m).$$

Alternatively, we can start with the interpolating polynomial $p_{2,\dots,m+1}$ for the nodes x_2, \dots, x_{m+1} and construct the polynomial $p_{1,\dots,m+1}(x)$ for all nodes x_1, \dots, x_{m+1} as

$$p_{1,\dots,m+1}(x) = p_{2,\dots,m+1}(x) + f[x_1, \dots, x_{m+1}] \cdot (x - x_2) \cdots (x - x_{m+1}).$$

Taking the difference of the last two equations gives

$$0 = p_{1,\dots,m}(x) - p_{2,\dots,m+1}(x) + (x - x_2) \cdots (x - x_m) f[x_1, \dots, x_{m+1}] \cdot \underbrace{((x - x_1) - (x - x_{m+1}))}_{(x_{m+1} - x_1)}$$

$$\begin{aligned} & \underbrace{p_{2,\dots,m+1}(x) - p_{1,\dots,m}(x)}_{f[x_2, \dots, x_{m+1}]x^m - f[x_1, \dots, x_m]x^m + O(x^{m-1})} = (x_{m+1} - x_1) \cdot f[x_1, \dots, x_{m+1}] \cdot x^m + O(x^{m-1}) \\ & (f[x_2, \dots, x_{m+1}] - f[x_1, \dots, x_m]) = (x_{m+1} - x_1) \cdot f[x_1, \dots, x_{m+1}] \end{aligned}$$

where $O(x^{m-1})$ denotes polynomials of order $m-1$ or less. □

3.4 Divided difference algorithm

We now can compute any divided differences using (4) and (5). Given the nodes x_1, \dots, x_n and function values y_1, \dots, y_n we can construct the **divided difference table** as follows: In the first column we write the nodes x_1, \dots, x_n . In the next column we write the divided differences of 1 argument $f[x_1] = y_1, \dots, f[x_n] = y_n$. In the next column we write the divided differences of 2 arguments $f[x_1, x_2], \dots, f[x_{n-1}, x_n]$ which we evaluate using (5). In the next column we write the divided differences of 3 arguments $f[x_1, x_2, x_3], \dots, f[x_{n-2}, x_{n-1}, x_n]$ which we evaluate using (5). This continues until we write in the last column the single entry $f[x_1, \dots, x_n]$.

x_1	$f[x_1]$	$f[x_1, x_2]$	$f[x_1, x_2, x_3]$	\dots	$f[x_1, \dots, x_n]$
\vdots	\vdots	\vdots	\vdots	\ddots	
\vdots	\vdots	\vdots	$f[x_{n-2}, x_{n-1}, x_n]$		
\vdots	\vdots		$f[x_{n-1}, x_n]$		
x_n	$f[x_n]$				

Using the divided difference notation we can rewrite the Newton form (3) as

$$p_{n-1}(x) = f[x_1] + f[x_1, x_2](x - x_1) + \dots + f[x_1, \dots, x_n](x - x_1) \dots (x - x_{n-1}).$$

Note that this formula uses the **top entries of each column of the divided difference table**.

However, we can also consider the nodes in the reverse order x_n, x_{n-1}, \dots, x_1 and obtain the alternative Newton form

$$p_{n-1}(x) = f[x_n] + f[x_{n-1}, x_n](x - x_n) + \dots + f[x_1, \dots, x_n](x - x_n)(x - x_{n-1}) \dots (x - x_2)$$

for the same polynomial $p_{n-1}(x)$. Note that this formula uses the **bottom entries of each column of the divided difference table**.

Let us use this second formula. We can implement this just storing n numbers d_1, \dots, d_n . We can first compute the first column d_1, \dots, d_n , then we compute the second column overwriting $d_1, \dots, d_{n-1}, \dots$, the last column overwriting d_1 :

$$\begin{aligned} d_1 &:= f[x_1] & d_1 &:= f[x_1, x_2] & d_1 &:= f[x_1, x_2, x_3] & \dots & d_1 &:= f[x_1, \dots, x_n] \\ \vdots & & \vdots & & \vdots & & & \vdots & \\ \vdots & & \vdots & & d_{n-2} &:= f[x_{n-2}, x_{n-1}, x_n] & & & \\ \vdots & & & & d_{n-1} &:= f[x_{n-1}, x_n] & & & \\ d_n &:= f[x_n] & & & & & & & \end{aligned}$$

In the end we have $d_n = f[x_n]$, $d_{n-1} = f[x_{n-1}, x_n], \dots, d_1 = f[x_1, \dots, x_n]$ so that

$$p_{n-1}(x) = d_n + d_{n-1}(x - x_n) + d_{n-2}(x - x_n)(x - x_{n-1}) + \dots + d_1(x - x_n) \dots (x - x_2)$$

Divided difference algorithm, Part 1: Given $x_1, \dots, x_n, y_1, \dots, y_n$ find the Newton coefficients d_1, \dots, d_n

For $i = 1, \dots, n$ do:

$$d_i := y_i$$

For $k = 1, \dots, n-1$ do:

For $i = 1, \dots, n-k$ do:

$$d_i = \frac{d_{i+1} - d_i}{x_{i+k} - x_i}$$

Divided difference algorithm, Part 2: Given $x_1, \dots, x_n, d_1, \dots, d_n$ and an evaluation point x find $y = p_{n-1}(x)$

$$y := d_1$$

For $i = 2, \dots, n$:

$$y := y \cdot (x - x_i) + d_i$$

This gives the following Matlab code:

```

function d = divddiff(x,y)
% compute Newton form coefficients of interpolating polynomial
n = length(x);
d = y;
for k=1:n-1
    for i=1:n-k
        d(i) = (d(i+1)-d(i))/(x(i+k)-x(i));
    end
end

function yt = evnewt(d,x,xt)
% evaluate Newton form of interpolating polynomial at points xt
yt = d(1)*ones(size(xt));
for i=2:length(d)
    yt = yt.*(xt-x(i)) + d(i);
end

```

Example: We are given the data points $\begin{array}{c|cccc} x_j & 0 & 1 & 2 & 4 \\ \hline y_j & 1 & 2 & 3 & 1 \end{array}$. Find the interpolating polynomial in Newton form.

We enter the x_j values in the first column and the y_j values in the second column:

x_j	$f[x_j]$	$f[x_j, x_{j+1}]$	$f[x_j, x_{j+1}, x_{j+2}]$	$f[x_1, x_2, x_3, x_4]$
0	1	1	0	$-\frac{1}{6}$
1	2	1	$-\frac{2}{3}$	
2	3	-1		
4	1			

We then obtain the remaining columns by using the recursion formula.

For the nodes in order x_1, x_2, x_3, x_4 we obtain the Newton form

$$\begin{aligned}
 p(x) &= f[x_1] + f[x_1, x_2](x - x_1) + f[x_1, x_2, x_3](x - x_1)(x - x_2) + f[x_1, x_2, x_3, x_4](x - x_1)(x - x_2)(x - x_3) \\
 &= 1 + 1 \cdot (x - 0) + 0 \cdot (x - 0)(x - 1) + \left(-\frac{1}{6}\right)(x - 0)(x - 1)(x - 2)
 \end{aligned}$$

For the nodes in order x_4, x_3, x_2, x_1 we obtain the Newton form

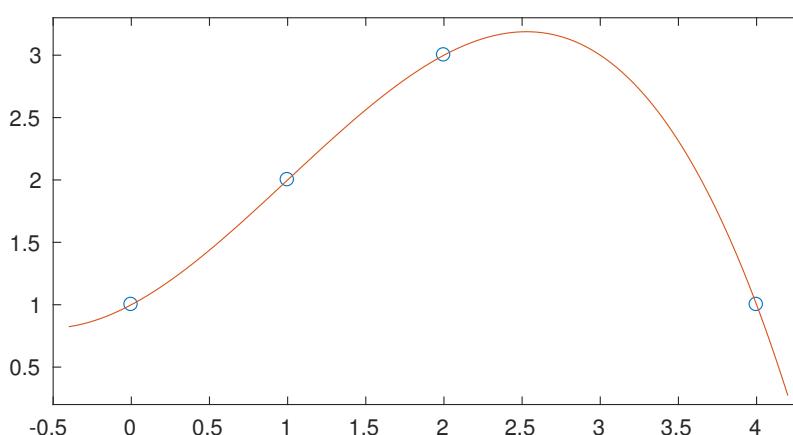
$$\begin{aligned}
 p(x) &= f[x_4] + f[x_3, x_4](x - x_4) + f[x_2, x_3, x_4](x - x_4)(x - x_3) + f[x_1, x_2, x_3, x_4](x - x_4)(x - x_3)(x - x_2) \\
 &= 1 + (-1)(x - 4) + \left(-\frac{2}{3}\right)(x - 4)(x - 2) + \left(-\frac{1}{6}\right)(x - 4)(x - 2)(x - 1)
 \end{aligned}$$

In Matlab we can plot the given points and the interpolating polynomial as follows:

```

x = [0,1,2,4]; y = [1,2,3,1]; % given x and y values
d = divddiff(x,y) % find coefficients of Newton form
xt = -.4:.01:4.2; % x-values for plotting
yt = evnewt(d,x,xt); % evaluate Newton form at points xt
plot(x,y,'o',xt,yt) % plot given pts and interpolating polynomial

```



3.5 Error formula for $f(x) - p(x)$

A divided difference $f[x_j, x_{j+1}]$ of two arguments satisfies

$$f[x_j, x_{j+1}] = \frac{f(x_{j+1}) - f(x_j)}{x_{j+1} - x_j} = f'(s)$$

for some $s \in (x_j, x_{j+1})$ by the mean value theorem. For general divided differences we have a similar result:

Theorem 3.3. *Assume that the derivatives $f, f', \dots, f^{(n-1)}$ exist and are continuous. Let x_1, \dots, x_n be different from each other. Then there exists $s \in (\min\{x_1, \dots, x_n\}, \max\{x_1, \dots, x_n\})$ such that*

$$f[x_1, \dots, x_n] = \frac{f^{(n-1)}(s)}{(n-1)!}. \quad (6)$$

Proof. Consider the interpolating polynomial $p(x)$ and the interpolation error $e(x) = f(x) - p(x)$. Then the function $e(x)$ is zero for x_1, \dots, x_n , hence it has at least n different zeros.

Since $e(x_1) = 0$ and $e(x_2) = 0$ there exists by the mean value theorem a point $x'_1 \in (x_1, x_2)$ with $e'(x'_1) = 0$. Hence the function $e'(x)$ has at least $n-1$ different zeros. Similarly, the function $e''(x)$ has at least $n-2$ different zeros, ..., the function $e^{(n-1)}$ has at least one zero s . Hence we have

$$0 = e^{(n-1)}(s) = f^{(n-1)}(s) - p^{(n-1)}(s).$$

Since $p(x) = f[x_1, \dots, x_n]x^{n-1} + O(x^{n-2})$ we have $p^{(n-1)}(x) = f[x_1, \dots, x_n](n-1)!$. \square

Let x_1, \dots, x_n be different from each other and let $p_{n-1}(x)$ be the interpolating polynomial for the function $f(x)$. Let \tilde{x} be different from x_1, \dots, x_n . We want to find a formula for the interpolation error $f(\tilde{x}) - p_{n-1}(\tilde{x})$: We first construct an interpolating polynomial $p_n(x)$ which interpolates in the points x_1, \dots, x_n and \tilde{x} . We must have

$$p_n(x) = p_{n-1}(x) + f[x_1, \dots, x_n, \tilde{x}](x - x_1) \cdots (x - x_n)$$

and using $f(\tilde{x}) = p_n(\tilde{x})$ we obtain

$$f(\tilde{x}) - p_{n-1}(\tilde{x}) = f[x_1, \dots, x_n, \tilde{x}](\tilde{x} - x_1) \cdots (\tilde{x} - x_n).$$

We can now express the divided difference using (6) and obtain

Theorem 3.4. *Assume that the derivatives $f, f', \dots, f^{(n)}$ exist and are continuous. Let x_1, \dots, x_n be different from each other and let p_{n-1} denote the interpolating polynomial. Then there exists an intermediate point $s \in (\min\{x_1, \dots, x_n, \tilde{x}\}, \max\{x_1, \dots, x_n, \tilde{x}\})$ such that*

$$f(\tilde{x}) - p_{n-1}(\tilde{x}) = \frac{f^{(n)}(s)}{n!} \cdot (\tilde{x} - x_1) \cdots (\tilde{x} - x_n).$$

The function $\omega(x) := (x - x_1) \cdots (x - x_n)$ is called the **node polynomial**.

In practice we don't know where the intermediate point s is located. If we know that x_1, \dots, x_n and \tilde{x} are in an interval $[a, b]$ we have the (possibly very pessimistic) upper bound

$$|f(\tilde{x}) - p(\tilde{x})| \leq \frac{1}{n!} \left(\max_{s \in [a, b]} |f^{(n)}(s)| \right) \cdot |\omega(\tilde{x})|$$

- The first term depends only on the function f and not on the nodes. This term becomes zero if $f^{(n)} = 0$ which happens if and only if f is a polynomial of degree $\leq n-1$. In this case we must have $p_{n-1}(x) = f(x)$ since the interpolating polynomial is unique.
- The second term $|\omega(\tilde{x})|$ depends only on \tilde{x} and the nodes x_1, \dots, x_n (and not on f). This term becomes equal to zero at the nodes, and it is small if \tilde{x} is close to one of the nodes.

3.6 Interpolation with multiple nodes

So far we assumed that the nodes x_1, \dots, x_n are different from each other. What happens if we move two nodes closer and closer together?

Example 1: Consider three nodes $x_1 < x_2 < x_3$. In this case we have the divided difference table

x_1	$f(x_1)$	$f[x_1, x_2] = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$	$f[x_1, x_2, x_3] = \frac{f[x_2, x_3] - f[x_1, x_2]}{x_3 - x_1}$
x_2	$f(x_2)$	$f[x_2, x_3] = \frac{f(x_3) - f(x_2)}{x_3 - x_2}$	
x_3	$f(x_3)$		

and the interpolating polynomial $p(x) = f[x_1] + f[x_1, x_2](x - x_1) + f[x_1, x_2, x_3](x - x_1)(x - x_2)$.

Now we move the node x_2 towards x_1 and want to know what happens in the limit. Assume that the function f is differentiable, then we get for $f[x_1, x_2]$

$$\lim_{x_2 \rightarrow x_1} \frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(x_1)$$

Hence we define $f[x_1, x_1] = f'(x_1)$. The divided difference table becomes

x_1	$f(x_1)$	$f[x_1, x_1] = f'(x_1)$	$f[x_1, x_1, x_3] = \frac{f[x_1, x_3] - f[x_1, x_1]}{x_3 - x_1}$
x_1	$f(x_1)$	$f[x_1, x_3] = \frac{f(x_3) - f(x_1)}{x_3 - x_1}$	
x_3	$f(x_3)$		

and the interpolating polynomial is $p(x) = f[x_1] + f[x_1, x_1](x - x_1) + f[x_1, x_1, x_3](x - x_1)(x - x_1)$. This function still satisfies $p(x_1) = f(x_1)$ and $p(x_2) = f(x_2)$. Additionally we have $p'(x_1) = f[x_1, x_1] = f'(x_1)$. Therefore $p(x)$ solves the following problem:

Given $f(x_1), f'(x_1), f(x_3)$ find an interpolating polynomial

Example 2: Consider nodes $x_1 = x_2 = x_3 < x_4 = x_5$.

x_1	$f(x_1)$	$f[x_1, x_1] = f'(x_1)$	$f[x_1, x_1, x_1] = \frac{1}{2}f''(x_1)$	\dots	$f[x_1, x_1, x_1, x_4, x_4]$
x_1	$f(x_1)$	$f[x_1, x_1] = f'(x_1)$	$f[x_1, x_1, x_4] = \frac{f[x_1, x_4] - f[x_1, x_1]}{x_4 - x_1}$	\therefore	
x_1	$f(x_1)$	$f[x_1, x_4] = \frac{f(x_4) - f(x_1)}{x_4 - x_1}$	$f[x_1, x_4, x_4] = \frac{f[x_4, x_4] - f[x_1, x_4]}{x_4 - x_1}$		
x_4	$f(x_4)$	$f[x_4, x_4] = f'(x_4)$			
x_4	$f(x_4)$				

Summary:

- For the nodes $x_1 \leq x_2 \leq \dots \leq x_n$ we now allow multiple nodes. For a node x_j of multiplicity m we are given $f(x_j), f'(x_j), \dots, f^{(m-1)}(x_j)$.
- We want to find an interpolating polynomial $p(x)$ of degree $\leq n-1$ which satisfies the n conditions for the function values and derivatives. This interpolation problem has a unique solution $p(x)$.
- We define divided differences with m identical nodes

$$f[x_j, \dots, x_j] := \frac{f^{(m-1)}(x_j)}{(m-1)!}$$

- Using this definition, we can fill the whole divided difference table and then obtain

$$p(x) = f[x_1] + f[x_1, x_2](x - x_1) + \dots + f[x_1, \dots, x_n](x - x_1) \dots (x - x_{n-1})$$

- The error formula also holds for multiple nodes:

$$f(x) - p(x) = \frac{f^{(n)}(t)}{n!}(x - x_1) \dots (x - x_n)$$

where t is between the points x, x_1, \dots, x_n