
Errors for Linear Systems

When we solve a linear systemAx = b we often do not knowA andb exactly, but have only approximationŝA and b̂
available. Then the best thing we can do is to solveÂx̂ = b̂ exactly which gives a different solution vectorx̂. We would like
to know how the errors of̂A andb̂ influence the error in̂x.

Example: Consider the linear systemAx = b with(
1.01 .99
.99 1.01

)(
x1

x2

)
=
(

2
2

)
.

We can easily see that the solution isx =
(

1
1

)
. Now let us use the slightly different right hand side vectorb̂ =

(
2.02
1.98

)
and solve the linear systemAx̂ = b̂. This gives the solution vector̂x =

(
2
0

)
. In this case a small change in the right hand

side vector has caused a large change in the solution vector.

Vector norms

In order to measure errors in vectors by a single number we use a so-calledvector norm.

A vector norm ‖x‖ measures the size of a vectorx ∈ Rn by a nonnegative number and has the following properties

‖x‖ = 0 ⇒ x = 0

‖αx‖ = |α| ‖x‖
‖x + y‖ ≤ ‖x‖+ ‖y‖

for anyx, y ∈ Rn, α ∈ R. There are many possible vector norms. We will use the three norms‖x‖1, ‖x‖2, ‖x‖∞ defined by

‖x‖1 = |x1|+ · · ·+ |xn|

‖x‖2 =
(
|x1|2 + · · ·+ |xn|2

)1/2

‖x‖∞ = max{|x1| , . . . , |xd|}

If we write ‖x‖ in an equation without any subscript, then the equation is valid for all three norms (using the same norm
everywhere).

If the exact vector isx and the approximation iŝx we can define therelative error with respect to a vector norm as ‖x̂−x‖
‖x‖ .

Example: Note that in the above example we have
‖b̂−b‖∞
‖b‖∞

= 0.01, but ‖x̂−x‖∞
‖x‖∞

= 1. That means that the relative error
of the solution is100 times as large as the relative error in the given data, i.e., the condition number of the problem is at least
100.

Matrix norms

A matrix norm‖A‖ measures the size of a matrixA ∈ Rn×n by a nonnegative number. We would like to have the property

‖Ax‖ ≤ ‖A‖ ‖x‖ for all x ∈ Rn (1)

where‖x‖ is one of the above vector norms‖x‖1 , ‖x‖2 , ‖x‖∞. We define‖A‖ as the smallest number satisfying (1):

‖A‖ := sup
x∈Rn

x 6=0

‖Ax‖
‖x‖

= max
x∈Rn

‖x‖=1

‖Ax‖

By using the1, 2, ∞ vector norm in this definition we obtain the matrix norms‖A‖1, ‖A‖2, ‖A‖∞ (which are in general
different numbers). It turns out that‖A‖1 and‖A‖∞ are easy to compute:
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Theorem:
‖A‖∞ = max

i=1,...,n

∑
j=1,...,n

|aij | (maximum ofrow sums of absolute values)

‖A‖1 = max
j=1,...,n

∑
i=1,...,n

|aij | (maximum ofcolumnsums of absolute values)

Proof: For the infinity norm we have

‖Ax‖∞ = max
i

∣∣∣∣∣∣
∑

j

aijxj

∣∣∣∣∣∣ ≤ max
i

∑
j

|aij | |xj | ≤

max
i

∑
j

|aij |

 ‖x‖∞
implying ‖A‖∞ ≤ maxi

∑
j |aij |. Let i∗ be the index where the maximum occurs and definexj = sign ai∗j , then‖x‖∞ = 1

and‖Ax‖∞ = maxi
∑

j |aij |.
For the 1-norm we have

‖Ax‖1 =
∑

i

∣∣∣∣∣∣
∑

j

aijxj

∣∣∣∣∣∣ ≤
∑

j

(∑
i

|aij |

)
|xj | ≤

(
max

j

∑
i

|aij |

)
‖x‖1

implying ‖A‖1 ≤ maxj
∑

i |aij |. Let j∗ be the index where the maximum occurs and definexj∗ = 1 andxj = 0 for j 6= j∗,
then‖x‖1 = 1 and‖Ax‖1 = maxj

∑
i |aij |. �

We will not use‖A‖2 since it is more complicated to compute (it involves eigenvalues).

Note that forA,B ∈ Rn×n we have‖AB‖ ≤ ‖A‖ ‖B‖ since

‖ABx‖ ≤ ‖A‖ ‖Bx‖ = ‖A‖ ‖B‖ ‖x‖ .

The following results about matrix norms will be useful later:

Lemma 1: ‖A−B‖ < 1
‖A−1‖ implies thatB is nonsingular.

Proof: For b := Ax we have‖x‖ =
∥∥A−1b

∥∥ ≤ ∥∥A−1
∥∥ ‖b‖ and therefore

‖Bx‖ = ‖Ax + (A−B)x‖ ≥ ‖b‖ − ‖(A−B)x‖ ≥ 1
‖A−1‖

‖x‖ − ‖A−B‖ ‖x‖ .

HenceBx = 0 and 1
‖A−1‖ − ‖A−B‖ > 0 imply x = 0, i.e.,B is nonsingular.

Lemma 2: For given vectorsx, y ∈ Rn with x 6= 0 there exists a matrixE ∈ Rn×n with Ex = y and‖E‖ = ‖y‖
‖x‖ .

Proof: For the infinity-norm we have‖x‖∞ = |xj | for somej. Let a ∈ Rn be the vector withaj = 1, ak = 0 for j 6= k and
let

E =
1
‖x‖

ya>,

then (i)a>x = ‖x‖∞ impliesEx = y and (ii)
∥∥ya>v

∥∥
∞ =

∣∣a>v
∣∣ ‖y‖∞ with

∣∣a>v
∣∣ ≤ ‖v‖∞ implies‖E‖ ≤ ‖y‖

‖x‖ .

For the 1-norm we usea ∈ Rn with aj = sign(xj) sincea>x = ‖x‖1 and
∣∣a>v

∣∣ ≤ ‖v‖1.
For the 2-norm we usea = x/ ‖x‖2 sincea>x = ‖x‖2 and

∣∣a>v
∣∣ ≤ ‖a‖2 ‖v‖2 = ‖v‖2.

Condition numbers

Let x denote the solution vector of the linear sytemAx = b. If we choose a slightly different right hand side vectorb̂ then

we obtain a different solution vector̂x satisfyingAx̂ = b̂. We want to know how the relative error
∥∥∥b̂− b

∥∥∥ / ‖b‖ influences

the relative error‖x̂− x‖ / ‖x‖ (“error propagation”). We haveA(x̂− x) = b̂− b and therefore

‖x̂− x‖ =
∥∥∥A−1(b̂− b)

∥∥∥ ≤ ∥∥A−1
∥∥∥∥∥b̂− b

∥∥∥ .
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On the other hand we have‖b‖ = ‖Ax‖ ≤ ‖A‖ ‖x‖. Combining this we obtain

‖x̂− x‖
‖x‖

≤ ‖A‖
∥∥A−1

∥∥
∥∥∥b̂− b

∥∥∥
‖b‖

.

The numbercond(A) := ‖A‖
∥∥A−1

∥∥ is calledcondition number of the matrixA. It determines how much the relative
error of the right hand side vector can be amplified. The condition number depends on the choice of the matrix norm: In
generalcond1(A) := ‖A‖1

∥∥A−1
∥∥

1
andcond∞(A) := ‖A‖∞

∥∥A−1
∥∥
∞ are different numbers.

Example: In the above example we have

cond∞(A) = ‖A‖∞
∥∥A−1

∥∥
∞ =

∥∥∥∥( 1.01 .99
.99 1.01

)∥∥∥∥
∞

∥∥∥∥( 25.25 −24.75
−24.75 25.25

)∥∥∥∥
∞

= 2 · 50 = 100

and therefore

‖x̂− x‖
‖x‖

≤ 100

∥∥∥b̂− b
∥∥∥

‖b‖

which is consistent with our results above (b andb̂ were chosen so that the worst possible error magnification occurs).

The fact that the matrixA in our example has a large condition number is related to the fact thatA is close to the singular

matrixB =
(

1 1
1 1

)
.

The following result shows that 1
cond(A) indicates how closeA is to a singular matrix:

Theorem: min
B∈Rn×n, B singular

‖A−B‖
‖A‖

=
1

cond(A)
Proof: (1) Lemma 1 shows:B singular implies‖A−B‖ ≥ 1

‖A−1‖ .

(2) By the definition of
∥∥A−1

∥∥ there existx, y ∈ Rn such thatx = A−1y and
∥∥A−1

∥∥ = ‖x‖
‖y‖ . By Lemma 2 there exists a

matrixE ∈ Rn×n such thatEx = y and‖E‖ = ‖y‖
‖x‖ . ThenB := A−E satisfiesBx = Ax−Ex = y − y = 0, henceB is

singular and‖A−B‖ = ‖E‖ = 1
‖A−1‖ . �

Example: The matrixA =
(

1.01 .99
.99 1.01

)
is close to the singular matrixB =

(
1 1
1 1

)
so that‖A−B‖∞

‖A‖∞
= .02

2 = .01.

By the theorem we have that0.01 ≤ 1
cond∞(A) or cond∞(A) ≥ 100. As we say above we havecond∞(A) = 100, i.e., the

matrixB is really the closest singular matrix to the matrixA.

When we solve a linear systemAx = b we have to store the entries ofA andb in the computer, yielding a matrix̂A with
rounded entrieŝaij = fl(aij) and a rounded right hand side vectorb̂. If the original matrixA is singular then the linear
system has no solution or infinitely many solutions, so that any computed solution is meaningless. How can we recognize
this on a computer? Note that the matrixÂ which the computer uses may no longer be singular.

Answer: We should compute (or at least estimate)cond(Â). If cond(Â) < 1
εM

then we can guarantee thatany matrix A

which is rounded tôA must be nonsingular:|âij − aij | ≤ εM |aij | implies
∥∥∥Â−A

∥∥∥ ≤ εM ‖A‖ for the infinity or1-norm.

Therefore
‖Â−A‖
‖Â‖ ≤ εM

1−εM
≈ εM andcond(Â) < 1−εM

εM
≈ 1

εM
imply

‖Â−A‖
‖Â‖ < 1

cond(Â)
. Hence the matrixA must be

nonsingular by the theorem.

Now we assume that we perturb both the right hand side vectorb and the matrixA:
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Theorem: AssumeAx = b andÂx̂ = b̂. If A is nonsingular and
∥∥∥Â−A

∥∥∥ ≤ 1/
∥∥A−1

∥∥ there holds

‖x̂− x‖
‖x‖

≤ cond(A)

1− cond(A)‖Â−A‖
‖A‖


∥∥∥b̂− b

∥∥∥
‖b‖

+

∥∥∥Â−A
∥∥∥

‖A‖


Proof: Let E = Â−A, henceAx̂ = b̂− Ex̂. SubtractingAx = b givesA(x̂− x) = (b̂− b)− Ex̂ and therefore

‖x̂− x‖ ≤
∥∥A−1

∥∥(∥∥∥b̂− b
∥∥∥+ ‖E‖ ‖x̂‖

)
.

Dividing by ‖x‖ and using‖b‖ ≤ ‖A‖ ‖x‖ ⇐⇒ ‖x‖ ≥ ‖b‖ / ‖A‖ gives

‖x̂− x‖
‖x‖

≤
∥∥A−1

∥∥ ‖A‖

∥∥∥b̂− b

∥∥∥
‖b‖

+
‖E‖
‖A‖

‖x̂‖
‖x‖


Now we have‖x̂‖‖x‖ ≤

‖x‖+‖x̂−x‖
‖x‖ = 1 + ‖x̂−x‖

‖x‖ . By putting ‖x̂−x‖
‖x‖ on the left hand side and solving for it we obtain the

assertion.�

If cond(A)‖Â−A‖
‖A‖ � 1 we have that both the relative error in the right hand side vector and in the matrix are magnified by

cond(A).

If cond(A)‖Â−A‖
‖A‖ =

∥∥A−1
∥∥∥∥∥Â−A

∥∥∥ ≥ 1 then by the theorem for the condition number the matrixÂ may actually be

singular, so that the solution̂x is no longer well defined.

Computing the condition number

We have seen that the condition number is very useful: It tells us what accuracy we can expect for the solution, and how
close our matrix is to a singular matrix.

In order to compute the condition number we have to findA−1. This takesn3+O(n2) operations, compared withn
3

3 +O(n2)
operations for the LU-decomposition. Therefore the computation of the condition number would make the solution of a linear
system 3 times as expensive. For large problems this is not reasonable.

However, we do not need to compute the condition number with full machine accuracy. Just knowing the order of magnitude
is sufficient. Assume that we pick a vectorc and solve the linear sytemAz = c. Thenz = A−1c and‖z‖ ≤

∥∥A−1
∥∥ ‖c‖ or∥∥A−1

∥∥ ≥ ‖z‖
‖c‖

.

This gives us a lower bound for
∥∥A−1

∥∥, and the cost of this operation is onlyn2 + O(n). The trick is to pickc such that‖z‖‖c‖
becomes as large as possible, so that the lower bound is close

∥∥A−1
∥∥. There are a number of heuristic methods available

which achieve fairly good lower bounds: (i) Pickc = (±1, . . . ,±1) and pick the signs so that the forward susbstitution gives
a large vector, (ii) picking̃c := z and solveAz̃ = c̃ often improves the lower bound. The Matlab functionscondest(A)
and1/rcond(A) use similar ideas to give lower bounds forcond1(A). Typically they give an estimated condition number
c with c ≤ cond1(A) ≤ 3c and require the solution of 2 or 3 linear systems which costsO(n2) operations if theLU
decomposition is known. (However, the Matlab commandscondest andrcond only use the matrixA as an input value,
so they have to compute the LU decomposition ofA first and needn

3

3 + O(n2) operations.)

Computation in machine arithmetic and residuals

When we run Gaussian elimination on a computer each single operation causes some roundoff error, and instead of the exact
solutionx of a linear system we only get an approximationx̂. As explained above we should select the pivot candidate with
the largest absolute value to avoid unnecessary subtractive cancellation, and this usually is a numerically stable algorithm.
However, there is no theorem which guarantees this for partial pivoting (row interchanges). (For “full pivoting” with row
and column interchanges some theoretical results exist. However, this algorithm is more expensive, and for all practical
examples partial pivoting seems to work fine.)
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Question 1: How much error do we have to accept for‖x̂−x‖
‖x‖ ? This is theunavoidable errorwhich occurs even for an

ideal algorithm where we only round the input values and the output value to machine accuracy, and use infinite accuracy
for all computations.

When we want to solveAx = b we have to store the entries ofA, b in the computer, yielding a matrix̂A and a right hand

side vector̂b of machine numbers so that
‖Â−A‖
‖A‖ ≤ εM and

‖b̂−b‖
‖b‖ ≤ εM . An ideal algorithm would then try to solve this

linear system exactly, i.e., compute a vectorx̂ such thatÂx̂ = b̂. Then we have

‖x̂− x‖
‖x‖

≤ cond(A)
1− cond(A)εM

(εM + εM ) ≈ 2 cond(A)εM

if cond(A) � 1/εM . Therefore the unavoidable error is2 cond(A)εM .

Question 2: After we computed̂x how can we check how good our computation was? The obvious thing to check is
b̂ := Ax̂ and to compare it withb. The differencer = b̂− b is called the residual. AsAx = b andAx̂ = b̂ we have

‖x̂− x‖
‖x‖

≤ cond(A)

∥∥∥b̂− b
∥∥∥

‖b‖

where
∥∥∥b̂− b

∥∥∥ / ‖b‖ is called therelative residual. We can compute (or at least estimate)cond(A), and therefore can obtain

an upper bound for the error‖x̂− x‖ / ‖x‖.

If
∥∥∥b̂− b

∥∥∥ / ‖b‖ is not much larger thanεM then the computation was numerically stable: Just perturbing the input slightly

from b to b̂ and then doing everything else exactly would give the same resultx̂.

But it can happen that the relative residual is much larger thanεM , and yet the computation is numerically stable. We obtain
a better way to measure numerical stability by considering perturbations of the matrixA:

Assume we have a computed solutionx̂. If we can find a slightly perturbed matrix̃A such that∥∥∥Ã−A
∥∥∥

‖A‖
≤ ε, Ãx̂ = b (2)

whereε not much larger thanεM , then the computation is numerically stable: Just perturbing the matrix within the roundoff
error and then doing everything exactly gives the same result as our computation.

How can we check whether such a matrixÃ exists? Compute the “weighted residual”

ρ :=

∥∥∥b̂− b
∥∥∥

‖A‖ ‖x̂‖
.

Then:

1. If x̂ is the solution of a slightly perturbed problem (2) we haveρ ≤ ε.

2. If ρ ≤ ε thenx̂ is the solution of a slightly perturbed problem (2).

Proof:

1. Let E = Ã−A. Then(A + E)x̂ = b or b̂− b = −Ex̂ yielding

∥∥∥b̂− b
∥∥∥ ≤ ‖E‖ ‖x̂‖ ,

∥∥∥b̂− b
∥∥∥

‖A‖ ‖x̂‖
≤ ‖E‖
‖A‖

≤ ε.

2. Let y := b − b̂. Using Lemma 2 we get a matrixE with Ex̂ = y and‖E‖ = ‖y‖
‖x̂‖ . ThenÃ := A + E satisfies

Ãx̂ = (A + E)x̂ = b̂ + (b− b̂) = b and ‖E‖‖A‖ = ‖b−b̂‖
‖x̂‖‖A‖ ≤ ε.
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