Errors for Linear Systems

When we solve a linear systerw = b we often do not knowA andb exactly, but have only approximations and b
available. Then the best ghing we can do is to solve= b exactly which gives a different solution vector We would like
to know how the errors ofi andb influence the error if.

Example: Consider the linear systes: = b with
1.01 .99 z1\ _ [ 2
.99 1.01 o ) \ 2 )

> . Now let us use the slightly different right hand side veéter ( 202 )

We can easily see that the solution:is- ( ! 108

1

and solve the linear systerh: = b. This gives the solution vectdr = < (2) ) . In this case a small change in the right hand

side vector has caused a large change in the solution vector.

Vector norms

In order to measure errors in vectors by a single number we use a so\etted norm
A vector norm ||z|| measures the size of a vectoe R™ by a nonnegative number and has the following properties
|z =0 = x=0
loz|| = af |||
2+ yll < [lz]l + llyll
foranyz,y € R", a € R. There are many possible vector norms. We will use the three npeths||z|,, || z| ., defined by

[l =l 4 -+ |2l

1/2
lolly = (loa* 4+ + [2al?)
lallye = masx{laal,... lval}

If we write ||z|| in an equation without any subscript, then the equation is valid for all three norms (using the same norn
everywhere).

[[&—z||
[E3]

If the exact vector is: and the approximation i& we can define theelative error with respect to a vector norm as

. b—b G .
Example: Note that in the above example we h 7 Lo = 0.01, but H"’ﬁx“f”m = 1. That means that the relative error

of the solution isl00 times as large as the relative error in the given data, i.e., the condition number of the problem is at lea:
100.

Matrix norms

A matrix norm||A|| measures the size of a mateixe R™*" by a nonnegative number. We would like to have the property
| Az| < [|A] ||| forall z € R" (1)
where||z|| is one of the above vector normis||, , ||z||, , ||z| .. We defingf| A|| as the smallest number satisfying (1):
[Az|

Al := sup —— = max || Az
Al = sup L = ma |4z
A0 [|lz[|=1

By using thel, 2, oo vector norm in this definition we obtain the matrix norié||;, ||A
different numbers). It turns out tha® ||, and|| A are easy to compute:

9 |[4]| o, (Which are in general



Theorem:

Al =  max E ] (maximum ofrow sums of absolute values)
= ’m’nj:l,...,n
|All, = Imax E |aij (maximum ofcolumnsums of absolute values)
J=4..,n

i=1,....,n

Proof: For the infinity norm we have

Al = max | D " aijarj| < max D laisl ;] < | max Y Jag| | Il
J J J

implying [|A|, < max; ; [a;;|. Leti, be the index where the maximum occurs and define: sign a;, ;, then||z|| , =
and||Az||, = max; Zj lagj].
For the 1-norm we have

[ Az, = Z Za,j:c] < Z (Z Iaw|> |z < (maXZZ: !%) B4

implying [|A||; < max; >, |a;;|. Letj. be the index where the maximum occurs and defipe= 1 andx; = 0 for j # j,,
then||z||, = 1 and||Az||; = max; >, |a;;|. O

We will not use||AJ|, since it is more complicated to compute (it involves eigenvalues).
Note that forA, B € R™*"™ we have|| AB|| < ||A]| || B]| since

[ABz| < [|A]|Bz|| = [ A Bl || -

The following results about matrix norms will be useful later:

Lemmal: |[A-BJ|< AT implies thatB is nonsingular.

IIA
Proof: Forb := Az we have||z|| = ||A~'b|| < ||[A7"|| ||b]| and therefore
1
|Bz|| = | Az + (A = B)z| > [|b]| - [[(A = B)z| > AT ]l = 1A = B} ]| -
HenceBz = 0 and ”A AT —||A = BJ| > 0imply z = 0, i.e., B is nonsingular.
Lemma 2:  For given vectors, y € R™ with x # 0 there exists a matri¥ € R"*" with Exz = y and || E|| = i”

Proof: For the infinity-norm we havéx|| = |z;| for somej. Leta € R™ be the vector witl; = 1, a, = 0 forj # k and
let

1
= 7ya—|—,
]

. T _ . . _ . T _ T . T . . 1yl
then (i)a'z = |z, implies Ez = y and (ii) ||ya UHOO = |a"v| ||yl with [a"v| < [|v]|o, implies | E|| <
For the 1-norm we use € R™ with a; = sign(z;) sincea’x = ||z||, and|a"v| < [|v];.

For the 2-norm we use = z/ ||z||, sincea’ = = ||z||, and|a"v| < |lall, [[v]ly = [|v]l5

Condition numbers

Let z denote the solution vector of the linear sytetm = b. If we choose a slightly different right hand side vedighen
we obtain a different solution vectarsatisfyingA# = b. We want to know how the relative err#f) — bH /1|b|| influences

the relative errofj: — z|| /||| (“error propagation”). We have(i: — =) = b — b and therefore

ozl = A7 G =) < a7 |o- 5]



On the other hand we hayié|| = ||Ax|| < ||A]| ||z||. Combining this we obtain
& — 2| _ e
Al A

i |
[E/ —

The numberond(A) := ||A||||A~| is calledcondition number of the matrixA. It determines how much the relative
error of the right hand side vector can be amplified. The condition number depends on the choice of the matrix norm:
generakond; (A) := ||A]|, |A~!||, andconda (A) := || Al| [|A~!]|, are different numbers.

IIbH

Example: In the above example we have

. 1.01 .99 25.25 —24.75
condeo(4) = 4]l || A 1HOOZH< 99 1.01 >H H( —24.75  25.25 )H =250=100

and therefore

. h— bH
|2 — x| <100
||| [|6]]

which is consistent with our results aboveaidb were chosen so that the worst possible error magnification occurs).
The fact that the matri in our example has a large condition number is related to the facttietlose to the singular
matrix B = bl

S\l 1)

The following result shows thac{m indicates how closel is to a singular matrix:

lA-B| _ 1
BeRmxn Bsingular || Al cond(A)
Proof: (1) Lemma 1 showsB singular implieg|A — B|| >

Theorem:

HA rA=1]
(2) By the definition of| A~!|| there existr,y € R" such thate = A~'y and||A™!| = Izl By Lemma 2 there exists a

=l
matrix £ € R"*" such thattx = y and||E|| = ”y” . ThenB := A — E satisfiesBx = Az — Ex =y —y = 0, henceB is

singularand|A — B| = | [E| = ﬁ. a
Example: The matrix4 = < 19091 1'9091 ) is close to the singular matri® = < 1 1 > SO that“ﬁ;f”oo = % = .01.

By the theorem we have that01 < m or cond(A) > 100. As we say above we havend..(A) = 100, i.e., the
matrix B is really the closest singular matrix to the matrx

When we solve a linear systedu: = b we have to store the entries dfandb in the computer, yielding a matrid with
rounded entrieg;; = fl(a;;) and a rounded right hand side vectorlf the original matrixA is singular then the linear
system has no solution or infinitely many solutions, so that any computed solution is meaningless. How can we recogni
this on a computer? Note that the matdxwvhich the computer uses may no longer be singular.

Answer: We should compute (or at least estimate)d( A) If cond(/l) < i then we can guarantee thaty matrix A

which is rounded tod must be nonsingulati;; — a;j| < e |ag;| |mpI|esHA AH < e ||A]| for the infinity or 1-norm.

H H EM _ ~ l—enm o H H 1
Therefore A < menm andcond(A) < M EM imply Al < cond (D) Hence the matrix4 must be

nonsingular by the theorem.

Now we assume that we perturb both the right hand side véetod the matrixA:



Theorem: Assumedz = b andA# = b. If A is nonsingular an#fl = AH <1/||[A7!|| there holds

lo—a| _  cond(4) o= ]4-4]
T~ ] cona( B0 | T~ AT

Proof: Let E = A — A, henceAi = b — Ei. SubtractingAz = b givesA(z — ) = (b — b) — E& and therefore
I& = all < [[A~] (|fo— o + 121 I21) -
Dividing by [|z[| and using|b]| < [|A[ [lz]| <= [lz[| = [|b]| / [|A[| gives

= e

& — ]| -1
== < [|[ATH| 1Al
e < A R e

Now we have% < W =1+ ”ﬁ;ﬁ””. By putting ””ﬁ;ﬁ”” on the left hand side and solving for it we obtain the
assertionJ
If cond(A)% < 1 we have that both the relative error in the right hand side vector and in the matrix are magnified by
cond(A).
If cond(A) H’ﬁ;f” =A™ HA — AH > 1 then by the theorem for the condition number the mattimay actually be

singular, so that the solutioinis no longer well defined.

Computing the condition number

We have seen that the condition number is very useful: It tells us what accuracy we can expect for the solution, and he
close our matrix is to a singular matrix.

In order to compute the condition number we have to find. This takes:®+ O (n?) operations, compared wit§ +O(n?)
operations for the LU-decomposition. Therefore the computation of the condition number would make the solution of a line:
system 3 times as expensive. For large problems this is not reasonable.

However, we do not need to compute the condition number with full machine accuracy. Just knowing the order of magnituc
is sufficient. Assume that we pick a vectoand solve the linear sytemz = ¢. Thenz = A~'cand||z|| < ||A7| |c[| or
=]

A7 > 2=
A7 > il

This gives us a lower bound fgrA—! ||, and the cost of this operation is onty + O(n). The trick is to pickc such thatlzl

el
becomes as large as possible, so that the lower bound is \ﬁ]@s’q\ There are a number of heuristic methods available
which achieve fairly good lower bounds: (i) Piek= (+1,...,41) and pick the signs so that the forward susbstitution gives
a large vector, (ii) picking := z and solveAz = ¢ often improves the lower bound. The Matlab functi@esidest(A)
andl1/rcond(A) use similar ideas to give lower bounds fond; (A). Typically they give an estimated condition number
c with ¢ < cond;(A) < 3c and require the solution of 2 or 3 linear systems which coxts?) operations if theLU
decomposition is known. (However, the Matlab commaraisdest andrcond only use the matriX4 as an input value,
so they have to compute the LU decompositiomdirst and nee(%3 + O(n?) operations.)

Computation in machine arithmetic and residuals

When we run Gaussian elimination on a computer each single operation causes some roundoff error, and instead of the e
solutionz of a linear system we only get an approximationmAs explained above we should select the pivot candidate with
the largest absolute value to avoid unnecessary subtractive cancellation, and this usually is a numerically stable algoritt
However, there is no theorem which guarantees this for partial pivoting (row interchanges). (For “full pivoting” with row
and column interchanges some theoretical results exist. However, this algorithm is more expensive, and for all practic
examples partial pivoting seems to work fine.)



Question 1: How much error do we have to accept f”” ? This is theunavoidable erromwhich occurs even for an
ideal algorithm where we only round the input values and the output value to machine accuracy, and use infinite accure
for all computations.

When we want to solvelz = b we have to store the entries df b in the computer, yielding a matri and a right hand

side vectorhb of machine numbers so thQ{T‘T < ey and 1o- ol bl < ep. Anideal algorithm would then try to solve this

linear system exactly, i.e., compute a vectamuch thatdi = b. Then we have
|z — || < cond(A)
|lz]|  — 1—cond(A)en

(em +em) = 2cond(A)eys

if cond(A) < 1/epr. Therefore the unavoidable errordsond(A)e .

Question 2: After we computed: how can we check how good our computation was? The obvious thing to check is
b := Az and to compare it with. The difference = b — b is called the residual. Adx = b and Az = b we have

B—bH
1]

< cond(A)

where”@ - bH / ||b]| is called theelative residual We can compute (or at least estimate)d(A), and therefore can obtain

an upper bound for the errdi: — || / ||=||.

If Hb — bH /1|6 is not much larger than,, then the computation was numerically stable: Just perturbing the input slightly
from b to b and then doing everything else exactly would give the same result

But it can happen that the relative residual is much larger éharand yet the computation is numerically stable. We obtain
a better way to measure numerical stability by considering perturbations of the matrix

Assume we have a computed solutidinf we can find a slightly perturbed matrik such that

HA_AH<5 Ai=b @)
[PV —

wheree not much larger than,,, then the computation is numerically stable: Just perturbing the matrix within the roundoff
error and then doing everything exactly gives the same result as our computation.

How can we check whether such a matiexists? Compute the “weighted residual”

B—bH
p = —-
| Al []2]]

Then:

1. If & is the solution of a slightly perturbed problem (2) we have «.

2. If p < ethenz is the solution of a slightly perturbed problem (2).
Proof:

1. LetE = A— A. Then(A + E)@ = borb — b = —E# yielding

A o3|z
b—b| <11l 2] P e,
H LAl = Al
2. Lety := b —b. Using Lemma 2 we get a matrik with E2 = y and ||E|| = L||| ThenA := A + E satisfies

~ ~

Ap = (A+E)i =b+ (b—b) = band |5 = 152

<
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